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Abstract. Given a fixed graph H with at least two edges and positive integers n and b, the strict (1 : b)
Avoider–Enforcer H-game, played on the edge set of Kn, has the following rules: In each turn Avoider
picks exactly one edge, and then Enforcer picks exactly b edges. Avoider wins if and only if the subgraph
containing her/his edges is H-free after all edges of Kn are taken.

The lower threshold of a graph H with respect to n is the largest b0 for which Enforcer has a winning
strategy for the (1: b) H-game played on Kn for any b ≤ b0, and the upper threshold is the largest b
for which Enforcer wins the (1: b) game. The separation conjecture of Hefetz, Krivelevich, Stojaković
and Szabó states that for any connected H, the lower threshold and the upper threshold of the Avoider–
Enforcer H-game played on Kn are not of the same order in n. Until now, the conjecture has been
verified only for stars, by Grzesik, Mikalački, Nagy, Naor, Patkos and Skerman.

We show that the conjecture holds for every connected graph H with at most one cycle (and at least
two edges), with a polynomial separation between the lower and upper thresholds. We also prove an
upper bound for the lower threshold of any graph H with at least two edges, and show that this bound
is tight for all graphs in which each connected component contains at most one cycle. Along the way, we
establish number-theoretic tools that might be useful for other problems of this type.

1. Introduction

Positional games are two-player combinatorial games played on a board that is usually finite, where
the players alternately claim previously unclaimed elements from the board until one of the players
achieves her/his winning criteria, or until all elements on the board are taken. The game is partitioned
into turns, where in each turn the first player makes her move, and then the second player makes his
move. Examples range from recreational games, such as Tic-Tac-Toe and Hex, to games played on
hypergraphs, where the elements claimed are vertices or edges. The investigation of positional games
has been very active lately, as is largely covered by the 2008 book of Beck [2] and the newer book
of Hefetz, Krivelevich, Stojaković and Szabó [10]. Here we focus on a subclass of positional games,
called Avoider–Enforcer games. In the following subsections we review what is already known, before
presenting our new results.

1.1. To win or not to win. Perhaps the most widely investigated type of games in the graph case is
Maker–Breaker games. Here, Maker wins if by the end of the game, the graph consisting of her edges
contains a desirable winning set of edges (e.g. the edges of a triangle), and Breaker wins otherwise. For
example, in the Maker–Breaker H-game (for a predetermined graph H), Maker wins if and only if, after
all edges have been taken, her graph contains an H-copy. Naturally, it is interesting to study the misère
version of Maker–Breaker games. The misère version of a game is played according to the original rules,
but the goal of the game is to lose. Misère Maker–Breaker games are called Avoider–Enforcer games:
here, Avoider loses if by the end of the game, the graph consisting of her edges contains an undesirable
losing set of edges, and wins otherwise. For example, in the Avoider–Enforcer H-game, Avoider loses if
her graph in the end of the game contains an H-copy. Our focus in this paper is on Avoider–Enforcer
games, see e.g. [5, 8, 9, 11, 12] for some previous results on this type of games.

It turns out that if each player picks exactly one edge per turn then Enforcer wins the H-game easily
for every H (provided that the board is large enough). Thus, it is natural to consider a biased variant,
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2 MA LGORZATA BEDNARSKA-BZDȨGA, OMRI BEN-ELIEZER, LIOR GISHBOLINER, AND TUAN TRAN

where Avoider only picks one edge per turn, and Enforcer picks b edges per turn. The general question
here is to understand, for an Avoider–Enforcer H-game with given parameters n and b, whether Avoider
has a winning strategy for this game, or Enforcer has such a strategy. Note that in games of this type,
where the game board is finite and the outcome of the game is always a win for one of the players, that
is, exactly one of the players has a winning strategy. This is described in more detail in [10, Section
1.2].

The biased H-game, and in particular the triangle game, i.e. the case where H = K3, has attracted
a considerable amount of interest, both in the Maker–Breaker setting (here Maker picks one edge and
Breaker picks b edges every turn) and in the Avoider–Enforcer setting. The asymptotic behaviour of the
threshold bias in the Maker–Breaker triangle game, i.e., the maximal bias b for which Maker wins the
triangle game on Kn, has been settled up to a multiplicative constant in the classical paper of Chvátal
and Erdős [6] from 1978 (see also [10, Theorem 3.1.3]). The constant has been slightly improved by
Balogh and Samotij [1]. A result of Bednarska and  Luczak [4] extends [6], determining the asymptotic
behaviour of the threshold for the Maker–Breaker H-game for any graph H. On the other hand, the
Avoider–Enforcer H-game is much less understood, and even seemingly simple cases such as the triangle
game have been wide open.

1.2. Avoider–Enforcer H-game. Formally, we study a class of strict Avoider–Enforcer games (cf. [2,
11]). Let H be a graph with at least two edges and let n, b ∈ N. In the (1 : b) strict Avoider–Enforcer
H-game played on the complete graph Kn, in each round the players claim previously unclaimed edges
of Kn. Avoider selects exactly one edge per turn and Enforcer selects exactly b edges per turn. If the
number of unclaimed edges is strictly less than b before a move of Enforcer, then Enforcer must claim
all of those edges. Avoider loses if by the end of the game she selects all edges of a copy of H, otherwise
she wins. Throughout the paper, for simplicity we say “Avoider–Enforcer games” instead of “strict
Avoider–Enforcer games”, since we do not consider the monotone version of Avoider–Enforcer games,
introduced in [9].

Following [9, 11], we consider two types of thresholds. Given a graph H with at least two edges,1 the
lower threshold bias f−H (n) is the largest integer such that for every b ≤ f−H (n), Enforcer has a winning
strategy for the (1 : b) Avoider–Enforcer H-game on Kn. The upper threshold bias f+

H (n) is the largest
integer b such that Enforcer wins the (1 : b) Avoider–Enforcer H-game on Kn. Throughout the paper
the upper (lower) threshold bias is simply called the upper threshold (lower threshold, respectively).

Our main goal in this paper is to investigate the asymptotic behaviour of f−H (n) and f+
H (n). We

always view H as fixed and n as a large integer (tending to infinity). The current state of knowledge
regarding the asymptotic behaviour of f−H (n) and f+

H (n) leaves much to be desired (cf. [10, Section
4.6]). Trivially, f−H (n) ≤ f+

H (n) always holds. Hefetz et al. [9] showed that for the path P3 on 3 vertices,
f−P3

(n) = Θ(n3/2) and f+
P3

(n) =
(
n
2

)
− 2. Grzesik et al. [7] generalised this result, proving that

f−Sh(n) = Θ
(
n

h
h−1

)
and f+

Sh
(n) = Θ

(
n
h−1
h−2

)
(1.1)

for every star Sh on h ≥ 4 vertices.
To present the next set of results, we need the following definitinos. Call a graph unicyclic if it is

connected and contains exactly one cycle. For a non-empty graph H, we define the following parameters:

m(H) = max
F⊆H: v(F )≥1

e(F )

v(F )
, m′(H) = max

F⊆H: e(F )≥1

e(F )− 1

v(F )
,

where v(F ), e(F ) are the number of vertices and edges of F , respectively. It is easy to see that for
connected H, m(H) < 1 holds if and only if H is a tree, and m(H) = 1 holds if and only if H is unicylic.

1If H contains at most one edge, Enforcer trivially always wins, independently of the value of b.
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In [3] the first author showed that f−H (n) = O(n1/m(H) lnn) for every graph H with at least two edges.
The authors of [7] managed to remove the logarithmic factor from the previous bound when m(H) ≤ 1.
In [3] the lower threshold f−H (n) was also estimated from below, but the obtained bound seemed far
from optimal. As for the upper threshold, it is known that

f+
H (n) = O(n

1
m′(H) ) (1.2)

for every graph H with at least two edges [3]. The authors of [9] suspected that the upper and the
lower thresholds are not of the same order when H is connected. Their conjecture, which we call the
separation conjecture, is the main inspiration for our research.

The separation conjecture ([9]). For every connected graph H with at least two edges, one has

f−H (n) = o(f+
H (n)).

In view of (1.1), the conjecture is true for stars. In this paper we show that it holds for all trees with
at least two edges and for all unicyclic graphs H (see the remark after the statement of Theorem 1.4).

1.3. Our contributions. Our first main result is the following general upper bound on f−H (n), which
either extends or improves all previously known general upper bounds for f−H (n).

Theorem 1.1. For every graph H, the lower threshold of the H-game satisfies

f−H (n) = O
(
n

1
m(H)

)
.

We learn from (1.1) that the upper bound in Theorem 1.1 is tight for stars. Our next result generalises
this to a much larger class of graphs.

Theorem 1.2. If H is a graph with at least two edges and m(H) ≤ 1, then f−H (n) = Ω(n
1

m(H) ).

Theorems 1.1 and 1.2 together imply f−H (n) = Θ(n
1

m(H) ) for every graph H with at least two edges
and m(H) ≤ 1. Amongst other things, the proof of Theorem 1.2 uses a supersaturation-like result (see
Lemma 4.5), which might be of independent interest.

The heart of the proof of Theorem 1.2 for trees is the following result, which states that under
some mild conditions on the bias b, Enforcer can force Avoider to make many threats. Below, an edge
e ∈ E(Kn) is called an H-threat if e has not been taken by the players, and adding e to Avoider’s graph
would create a new copy of H in her graph.

Theorem 1.3. Let H be a tree or a unicyclic graph, with at least two edges. Then there exists a constant
γ = γ(H) ∈ (0, 1) such that in the (1 : b) Avoider–Enforcer H-game played on Kn the following holds.
If 8v(H)n ≤ b+1 ≤ γne(H)/(e(H)−1), and if furthermore b is even whenever H is unicyclic, then Enforcer
has a strategy in which, at some point, either he has already won or the number of H-threats is greater
than γe(H)−1nv(H)/(b+ 1)e(H)−1. The above is also true if in the first round Avoider is allowed to select
any number of edges she wishes (possibly none) while Enforcer has to select exactly r edges for some
fixed number r ∈ {0, 1, . . . , b}.

Interestingly, Theorem 1.3 can be proved by induction on v(H). Besides its use in proving Theorem
1.2, Theorem 1.3 in conjunction with some number-theoretic results gives the following lower bound on
the upper threshold of trees and unicyclic graphs.

Theorem 1.4. For any connected graph H with at least three edges the following holds.

(i) If H is a tree, then f+
H (n) = Ω

(
n
v(H)−1
v(H)−2

)
.

(ii) If H is unicyclic, then f+
H (n) = Ω

(
n
v(H)+2
v(H)+1

)
.
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(iii) If H is unicyclic, then f+
H (n) ≥ cHn

v(H)
v(H)−1 for infinitely many values of n, where cH > 0 depends

only on H.

Part (iii) shows that the upper bound in (1.2) is tight for every unicyclic graph. Theorem 1.1 together
with Parts (i) and (ii) prove the separation conjecture for all connected graphs H with at least two
edges and m(H) ≤ 1.

Corollary 1.5. The separation conjecture holds for every graph H which is either unicyclic or a tree
with at least two edges.

As opposed to the lower threshold, the upper threshold for the H-game is affected by the number
of components. For simplicity, the statement below is given for graphs H with m(H) = 1, but similar
results hold for forests.

Theorem 1.6. Let H be a disconnected graph with m(H) = 1 and at least two unicyclic components.
Then

f+
H (n) = O(n).

Theorems 1.2 and 1.6 imply that f+
H (n) = Θ(f−H (n)) = Θ(n) for every disconnected graph H with

m(H) = 1 and at least two unicyclic components. Therefore, for disconnected graphs there is no
asymptotic separation between the lower and upper thresholds in general.

1.4. Organisation. The paper is organised as follows. In Section 2 we introduce basic notation and
simple facts that will be used throughout. Section 3 is dedicated to the proofs of Theorems 1.1, 1.4
and 1.6. We establish Theorem 1.2 in Section 4. In Section 5 we prove Theorem 1.3 by analysing
games on blow-ups of multigraphs. Section 6 contains concluding remarks, including open questions
and conjectures regarding the threshold biases for the H-game for every H. The appendix is devoted
to the proofs of all number theoretic lemmata which are required in the proofs of the main theorems.

2. Preliminaries

For a natural number k we denote the set {1, 2, . . . , k} by [k]. For a graph G = (V (G), E(G)) and
a set of vertices S ⊆ V (G) we denote E(S) = {e ∈ E(G) : e ⊆ S}. For a pair of sets S, T ⊆ V (G), let
E(S, T ) :=

{
{s, t} ∈ E(G) : s ∈ S, t ∈ T

}
. The degree of a vertex v in G is denoted by dG(v); NG(v)

is the set of neighbours of v. We write G[S] for the subgraph of G induced by S. We denote by ∆(G)
and δ(G) the maximum degree and minimum degree in G, respectively.

We defined Avoider–Enforcer H-games as games played on Kn. However, in subsequent sections we
will consider auxiliary Avoider–Enforcer games on other graphs. Therefore in all definitions below we
assume that the game is played on the edge-set of a graph F = (V (F ), E(F )). We call E(F ) the board
of the game. At any point in the game, the graphs GA and GE are spanning subgraphs of F , and their
edge-sets consist of all edges picked by Avoider and Enforcer, respectively, up to this point. We say
that an edge e ∈ E(F ) is free if e /∈ E(GE) ∪ E(GA). An edge e ∈ E(F ) is an H-threat or simply a
threat if it is free and there exists an H-copy in GA ∪ {e} that is not contained in GA.

By default we assume that Avoider starts the game. Nonetheless, sometime we change this rule, but
then we explicitly state that Enforcer is the first player. The following two facts are well-known and
frequently used when studying Avoider–Enforcer games. We will use them often in the next sections.

Fact 2.1. Suppose that t ≥ 1,
(
n
2

)
− t is divisible by b + 1 and the (1 : b) Avoider–Enforcer H-game is

being played on Kn. If at some point of the game, the number of H-threats is at least t, then Enforcer
has a strategy to win the game from this point on.
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Fact 2.2. Suppose that the (1 : b) Avoider–Enforcer H-game is being played on Kn. If at some point
of the game there are at least b + 1 H-threats, then Enforcer has a strategy to win the game from this
point on. The same is true under the assumption that Enforcer is the first player.

3. Proofs of Theorems 1.1, 1.4 and 1.6

Here we present the proofs of Theorems 1.1, 1.4 and 1.6. They can be read independently of each
other.

3.1. Proof of Theorem 1.1. The key building blocks of the proof of Theorem 1.1 are the following
two lemmata. The first is a simplified version of a result due to the first author [3].

Lemma 3.1 (implicit in [3, Theorem 1.2]). Let H be a graph with at least one edge. Assume that b and
q are two positive integers such that the remainder of the division of

(
n
2

)
by b+ 1 is at least q + 1, and

nv(H) ·
(

q

e(H)
+ 1

)−e(H)

< 1.

Then Avoider has a winning strategy for the (1 : b) Avoider–Enforcer H-game on Kn.

The second is a number theoretic result. We defer its proof to the appendix.

Lemma 3.2. Given real numbers α, c1 and c2 with α > 1 and 0 < c2 < c1, there exists a positive
constant C = C(α, c1, c2) with the following property. For any integers q and N with q,N ≥ C and
c2q

α ≤ N ≤ c1q
α, we can find an integer k such that q < k ≤ Cq and the remainder of the division of

N by k is greater than q.

With Lemmata 3.1 and 3.2 in hand, it is easy to finish the proof of Theorem 1.1.

Proof of Theorem 1.1. If H is a matching with at least two edges, then Avoider trivially wins when
b ≥

(
n
2

)
− 1 = Θ(n2), so we can assume that H contains two adjacent edges. Let F be a subgraph of H

such that e(F )/v(F ) = m(H). Set

q = de(F ) · n1/m(H)e = de(F ) · nv(F )/e(F )e.

By the choice of q, we have nv(F )
(

q
e(F )

+ 1
)−e(F )

< 1. Furthermore, since H contains two adjacent

edges, m(H) > 1/2. Thus we can use Lemma 3.2 with α = 2m(H), c1 = 1, c2 = 1
3
e(F )−2m(H),

q = de(F ) · n1/m(H)e, and N =
(
n
2

)
to conclude that for a suitable positive constant C = C(H) there

exists an integer k = k(n) such that q < k ≤ Cq and the remainder of a division of
(
n
2

)
by k is at least

q+ 1. By Lemma 3.1 we conclude that for b = k− 1 Avoider has a strategy to avoid creating a copy of
F in Kn. This means that she also avoids a copy of H, giving f−H (n) < Cq − 1 = O(n1/m(H)). �

3.2. Deriving Theorem 1.4 from Theorem 1.3. In order to establish Theorem 1.4 via Theorem 1.3,
we will need the following simple number theoretic results, whose proofs are given in the appendix.

Lemma 3.3. Given c > 0 and a rational number α ∈ (0, 2], there exists d ∈ (0, c) such that for infinitely
many n ∈ N there is an odd divisor q of

(
n
2

)
− 1 with dnα ≤ q ≤ cnα.

Lemma 3.4. Given c > 0 and α ∈ (1, 2), there exists n0 ∈ N such that for each integer n > n0 one can
find an integer 1 ≤ t ≤ c2n2α−2 for which

(
n
2

)
− t is divisible by some odd integer q with 1

3
cnα ≤ q ≤ cnα.

Proof of Theorem 1.4. Let h = v(H), and let γ = γ(H) ∈ (0, 1) be the constant given by Theorem
1.3.

(i) Based on Lemma 3.4 with c = γ and α = h−1
h−2 , for n large enough we can find an integer

1 ≤ t ≤ γ2n2/(h−2) and an integer b so that
(
n
2

)
− t is divisible by b + 1 and 1

3
γn

h−1
h−2 ≤ b + 1 ≤ γn

h−1
h−2 .
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Note that 8hn ≤ b+ 1 ≤ γn(h−1)/(h−2), so in view of Theorem 1.3, Enforcer has a strategy such that at
some point either he has already won or the number of threats is greater than

γh−2nh/(b+ 1)h−2 ≥ γh−2nh/(γn(h−1)/(h−2))h−2 = n > t,

for h ≥ 4. Hereby Enforcer has a winning strategy by Fact 2.1.

(ii) Using Lemma 3.4 with c = γ and α = h+2
h+1

, we infer that for n large enough there exist an integer

1 ≤ t ≤ c2n2/(h+1) and an even number b so that
(
n
2

)
− t is divisible by b+1 and 1

3
cn

h+2
h+1 ≤ b+1 ≤ cn

h+2
h+1 .

As 8hn ≤ b+ 1 ≤ γnh/(h−1), we learn from Theorem 1.3 that Enforcer has a strategy such that at some
point either he has already won or the number of threats is greater than

γh−1nh/(b+ 1)h−1 ≥ γh−1nh/(γn(h+2)/(h+1))h−1 = n2/(h+1) > t.

Thus Enforcer has a winning strategy by Fact 2.1.

(iii) Using Lemma 3.3 with c = γ and α = h
h−1 , we conclude that there is a constant d = d(γ, h) > 0

such that for infinitely many n ∈ N there exists an even number b for which dnh/(h−1) ≤ b+1 ≤ γnh/(h−1)

and
(
n
2

)
− 1 is divisible by b + 1. By Theorem 1.3, Enforcer has a strategy such that at some point

either he has already won or there are more than γh−1nh/(b + 1)h−1 threats. In the latter case, since
γh−1nh/(b+ 1)h−1 ≥ 1, by Fact 2.1 Enforcer wins. �

3.3. Proof of Theorem 1.6. Here we give the proof of Theorem 1.6. Our arguments rely on a result
due to the first author [3].

Lemma 3.5 (implicit in [3, Theorem 1.2]). Let H be a finite collection of graphs with at least two
vertices, and let b be a natural number with∑

F∈H

nv(F ) ·
( b

e(F )
+ 1
)−e(F )

< 1.

Then Avoider has a strategy for the (1 : b) Avoider–Enforcer game on Kn such that no copy of any
graph F ∈ H appears in her graph before the last round.

Proof of Theorem 1.6. Let H be a graph with at least two unicyclic components H1, H2, . . . , Ht.
Consider a (1 : b) Avoider–Enforcer H-game played on Kn. Let F1, F2, . . . , Ft be the unique cycles in
H1, H2, . . . , Ht, respectively. By an easy calculation one can verify that there exists a positive constant
c = c(H) such that if b > cn, then the assumption of Lemma 3.5 is satisfied. Thus Avoider has a
strategy such that for each i ∈ {1, 2, . . . , t}, no copy of Fi appears in her graph before the last round.
This fact implies that at the end of the game there are no disjoint copies of H1 and H2 in Avoider’s
graph. Therefore Avoider wins the H game on Kn, implying that f+

H (n) ≤ cn. �

4. Lower bound on the lower threshold

This section is devoted to the proof of Theorem 1.2. We remark that when H is a tree, our proof
uses Theorem 1.3 as a black box.

4.1. Proof of Theorem 1.2. We will first state special cases of Theorem 1.2, and then establish
Theorem 1.2 using them. For this purpose, we introduce some notation.

Definition 4.1. Every unicyclic graph H contains a single cycle v1, . . . , vk, and for every 1 ≤ i ≤ k
there is a (possibly trivial)2 tree Ti which contains vi and no other vertex from v1, . . . , vk, such that
the trees T1, . . . , Tk are pairwise vertex-disjoint and do not have any edge between them except for the

2We say that Ti is trivial if V (Ti) = {vi}.
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edges of the cycle v1, . . . , vk. We say that an edge e ∈ E(H) is a cycle-edge if it is one of the edges of
the cycle v1, . . . , vk. Otherwise e is a tree-edge. The graph H is called odd (even) if k is odd (even).

The following results, whose proofs are given in the next three subsections, cover the case when H is
connected.

Theorem 4.2. If H is a tree with at least two edges, then f−H (n) = Ω(n1/m(H)).

Theorem 4.3. Let H be an odd unicyclic graph with h vertices. If b+ 1 ≤ n/(12h), then Enforcer wins
the (1 : b) H-game on Kn.

Theorem 4.4. Let H be an even unicyclic graph with h vertices, and suppose that the unique cycle in
H has length k. If b+ 1 ≤ n/(200k(h− k + 1)), then Enforcer wins the (1 : b) H-game on Kn.

We are now ready for the proof that f−H (n) = Θ(n1/m(H)) for any graph H with m(H) ≤ 1. With the
above three theorems in hand, it only remains to prove this for disconnected graphs.

Proof of Theorem 1.2. Let H be a (disconnected) graph with m(H) ≤ 1 and t ≥ 2 components
H1, . . . , Ht with at least one edge 3. Roughly speaking, Enforcer’s strategy for H takes a “divide and
conquer” approach, that partitions the vertices of Kn into t parts and forces Avoider to build one
connected component of H in each part. We provide the high-level idea of this approach, omitting some
of the technical details (as these follow from the proofs of Theorems 4.2, 4.3 and 4.4).

Clearly m(Hi) ≤ m(H) for i = 1, 2, . . . , t. It follows from Theorems 4.2, 4.3 and 4.4 that there exists
a constant c > 0 such that if b < cn1/m(H), then Enforcer can force a copy of Hi in the (1 : b) game
played on Kdn/te, as well as in the game played on Kbn/tc. By analysing the proof of Theorems 4.2,
4.3 and 4.4, it is not hard to observe that Enforcer can force Hi in each of these games even if he has
to make a constant number, say t2 in total, of extra moves, claiming at most b edges in each of these
moves.4 These extra moves affect only the constants in Theorems 4.3 and 4.4, and in Theorem 1.3
which is the key proof ingredient for Theorem 4.2.

Consider the following Enforcer’s strategy for the (1 : b) H-game played on Kn. First Enforcer splits
V (Kn) into t almost equal sets V1, V2, . . . , Vt and pretends he plays t +

(
t
2

)
separate games Gi,j with

i ≤ j and i, j ∈ {1, 2, . . . , t}. Every game Gi,i is played on the board E(Vi), while for i < j the game
Gi,j is played on E(Vi, Vj). Every time Avoider plays in Gi,j, Enforcer answers in the same game. In
the game Gi,j with i < j Enforcer plays arbitrarily. In every game Gi,i the aim of Enforcer is to force
Avoider to build a copy of Hi.

In each of the games Gi,j it might happen (depending on Avoider’s strategy) that Enforcer is the first
player. It may also happen that in a game he has some extra (partial) moves to make but the number
of such extra moves is at most the number of other games, i.e. t − 1 +

(
t
2

)
≤ t2, and the number of

extra edges Enforcer will have to add during these moves is at most t2b. In any case, even if the above
happens, Enforcer can apply the suitable strategy in each Gi,i to force Avoider to create a copy of Hi

in it. This way, Enforcer wins the H-game on Kn. Hence f−H (n) ≥ cn1/m(H), as required.
�

4.2. Trees. Here we derive Theorem 4.2 from Theorem 1.3. The proof of Theorem 1.3 will be given
later in Section 5.

Proof of Theorem 4.2 from Theorem 1.3. Let H be a tree on h ≥ 3 vertices and consider an

H-game (1 : b) on Kn. Our goal is to show that f−H (n) = Ω(n
h
h−1 ). It is well known that every graph

3If H has only one component containing edges, then forcing H is equivalent to forcing this component, so the assertion
follows from Theorems 4.2–4.4.

4Theorems 4.2, 4.3 and 4.4 cover all cases where Hi is not a single edge. The case where Hi is a single edge is trivial:
As soon as Avoider picks one edge, Enforcer wins in this part of the game.
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with n vertices and more than hn edges contains a copy of every tree on h vertices. It implies that there
is a constant c = c(h) such that for every b+ 1 ≤ cn and sufficiently large n, every Enforcer’s strategy
is a winning strategy.

Consider the case b+ 1 ≥ 8hn. Since we are only interested in the regime b = O(n
h
h−1 ), we may also

assume that b + 1 ≤ γn
h−1
h−2 where γ > 0 is the constant given by Theorem 1.3. Then Enforcer has a

strategy to force either a copy of H in Avoider’s graph or more than γh−2nh/(b + 1)h−2 threats. As

γh−2nh/(b+ 1)h−2 > b for 8hn ≤ b+ 1 ≤ γ
h−2
h−1n

h
h−1 , Enforcer wins the game for such b due to Fact 2.2.

It remains to consider the case cn < b+ 1 < 8hn. Let n′ = bcn/(8h)c. Then 8hn′ ≤ b+ 1 ≤ γ′(n′)
h
h−1

for every positive constant γ′, provided that n is sufficiently large. At the first stage of the game Enforcer
selects all free edges from the set E(Kn) \ E(Kn′), for some Kn′ ⊆ Kn. Then the game is transformed
into the H-game on Kn′ , with additional assumption that in the first round of this new game Avoider
is allowed to select as many edges as she wishes (maybe none), while Enforcer has to select r edges, for
some fixed r ∈ {0, 1, . . . , b}. In view of Theorem 1.3, analogously to the previous case, we can argue
that Enforcer wins the H-game on Kn′ and thereby he wins the H-game on Kn as well.

In view of the above three cases, the assertion easily follows. �

4.3. Odd unicyclic graphs. In this section we prove Theorem 4.3. Our main tool is the following
supersaturation-type result.

Lemma 4.5. Let H be a unicyclic h-vertex graph. Then every graph G has at least e(G)− (h− 2)v(G)

pairs {x, y} ∈
(
V (G)
2

)
such that E(G) ∪

{
{x, y}

}
contains a copy of H in which {x, y} is a cycle-edge.

Proof. For simplicity, we say that a pair {x, y} as in the statement of the lemma is a cycle-threat. Let
n = v(G) and m = e(G). The proof is by induction on n. For n = 1, the lemma obviously holds since
m− (h− 2)n ≤ m = 0.

Let G be a graph with n ≥ 2 vertices and m edges. First assume that dG(v) ≤ h − 2 for some
v ∈ V (G) and consider G′ = G \ {v}. By the induction hypothesis, the number of cycle-threats in G′

(and thus in G) is at least e(G′) − (h − 2)v(G′) ≥ m − (h − 2) − (h − 2)(n − 1) = m − (h − 2)n, as
required. From now on assume that δ(G) ≥ h − 1. It is well known that under this assumption every
embedding of a subtree of any tree T with h vertices into G can be extended into an embedding of T
into G.

Recall that H consists of a cycle v1, . . . , vk and trees T1, . . . , Tk such that V (Ti)∩ {v1, . . . , vk} = {vi}
for every i ∈ [k]. Consider an embedding φ : H \ Tk → G. Put U := Im(φ) ⊆ V (G). Then |U | ≤ h− 1.
We claim that for every vertex y ∈ NG

(
φ(vk−1)

)
\ U , the pair {φ(v1), y} is a cycle-threat. To prove

this, it is enough to extend the embedding φ by putting φ(vk) = y and then to extend it again, into an
embedding of the tree E(H) \ {{v1, vk}} into G.

Similarly, for every vertex y ∈ NG

(
φ(v1)

)
\ U , the pair {φ(vk−1), y} is a cycle-threat. It follows that

the number of cycle-threats that contain one of the vertices φ(v1), φ(vk−1) is at least

dG
(
φ(v1)

)
+ dG

(
φ(vk−1)

)
− 2(|U | − 1) ≥ dG

(
φ(v1)

)
+ dG

(
φ(vk−1)

)
− 2(h− 2), (4.1)

as |U | ≤ h− 1.
Now consider the graph G′ obtained from G by removing two vertices φ(v1) and φ(vk−1). By the

induction hypothesis, the number of cycle-threats in G′ is at least

e(G′)− (h− 2)v(G′) ≥ m− dG
(
φ(v1)

)
− dG

(
φ(vk−1)

)
− (h− 2)(n− 2). (4.2)

Adding up (4.1) and (4.2), we get that G contains at least m− (h− 2)n cycle-threats, as required. �

Proof of Theorem 4.3. With Fact 2.2 in mind, we will show that Enforcer has a strategy which
guarantees that at some point of the game, either Enforcer has already won or the number of H-threats
is at least b+ 1.
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At the start of the game Enforcer arbitrarily partitions V (Kn) into two sets X, Y of sizes bn/2c and
dn/2e, respectively. Enforcer claims arbitrary edges from E(X, Y ) as long as he can. Consider the point
in the game just after the last edge in E(X, Y ) was claimed. We claim that at this point either Enforcer
has already won or there are at least b+ 1 H-threats. Let GA denote Avoider’s graph at this point and
put gX,Y = |E(GA) ∩ E(X, Y )|, gX = |E(GA) ∩ E(X)| and gY = |E(GA) ∩ E(Y )|. Since every edge in
E(X, Y ) was already claimed, the number of edges claimed by Avoider up to this point is at least

e(GA) ≥ |E(X, Y )| − b
b+ 1

≥ (n2 − 1)/4− b
b+ 1

≥ n2

4(b+ 1)
− 1.

As e(GA) = gX,Y +gX+gY , one of the numbers gX,Y , gX , gY is not smaller than n2/(12(b+1))−1. By our
choice of b we have b+ 1 ≤ n/12h ≤ n2/(12(h− 1)n+ 12), implying that n2/(12(b+ 1))− 1 ≥ (h− 1)n.
Assume first that gX,Y ≥ (h − 1)n. Let G′ be the graph whose edges are E(GA) ∩ E(X, Y ). Then
e(G′) = gX,Y ≥ (h−1)n. By Lemma 4.5, there are at least e(G′)− (h−2)n ≥ n ≥ b+1 pairs of vertices

{u, v} ∈
(
V (G′)

2

)
such that G′ ∪

{
{u, v}

}
contains a copy of H in which {u, v} is a cycle-edge. Let {u, v}

be such a pair. Since the cycle in H is odd and G′ only contains edges from E(X, Y ), either u, v ∈ X
or u, v ∈ Y . Since Enforcer only claims edges between X and Y , the edge {u, v} is either free or taken
by Avoider. If {u, v} is taken by Avoider then her graph contains a copy of H, implying that Enforcer
has already won the game. Otherwise, {u, v} is an H-threat. We conclude that unless Enforcer had
already won, there are at least b+ 1 H-threats, as required.

Now assume that gX ≥ (h − 1)n. In this case let G′ be the graph whose edges are E(GA) ∩ E(X).
By Lemma 4.5 and the same argument as in the previous case, either Enforcer had already won or X
contains at least b + 1 H-threats, as required. The case gY ≥ (h − 1)n is handled analogously. This
completes the proof of the theorem. �

4.4. Even unicyclic graphs. The aim of this section is to prove Theorem 4.4. For this purpose, we
will need the following folklore result. Since we have not been able to find a reference for it, we include
a proof here.

Lemma 4.6. Let T be a tree with t vertices. Let G be a graph with maximum degree ∆. Then G
contains at least (e(G)− (t− 2)v(G))/(t∆) pairwise vertex-disjoint copies of T .

Proof. Let n = v(G) and m = e(G). The proof is by induction on n. The base case is n < t. It is easy
to check that in this case m ≤

(
n
2

)
≤ (t− 2)n, so there is nothing to prove.

Suppose that n ≥ t. If m ≤ (t−2)n, then the lemma holds trivially. Assume, then, that m > (t−2)n.
It is well known that if n ≥ t and m > (t − 2)n, then G contains a copy of every tree on t vertices.
Let u1, . . . , ut ∈ V (G) be the vertices of a copy of T in G, and let G′ be the graph obtained from G
by removing the vertices u1, . . . , ut. We have v(G′) = n − t and e(G′) ≥ m − t∆. By the induction
hypothesis, G′ contains at least

e(G′)− (t− 2)v(G′)

t∆
≥ m− t∆− (t− 2)n

t∆
≥ m− (t− 2)n

t∆
− 1

pairwise vertex-disjoint copies of T . Now, the copy of T on {u1, . . . , ut} is clearly disjoint from every
copy in G′, giving a total of (m− (t− 2)n)/(t∆) pairwise vertex-disjoint copies of T . �

Proof of Theorem 4.4. We will describe a strategy for Enforcer which guarantees that at some point
of the game either Enforcer has already won or the number of H-threats is at least b + 1 (implying
that Enforcer wins by Fact 2.2). We start by defining a tree T (H) which will play an important role in
Enforcer’s strategy.

Suppose that the unique cycle in H is v1, . . . , vk. Let T ′ = T ′(H) be the tree obtained from H by
contracting the edges of the cycle v1, . . . , vk into one vertex v. Let T (H) be the graph which consists
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H T ′(H)

v

u1 u2 u3 u4 u5 u6

T (H)

Figure 1. The tree T (H) - an example

of a path u1, . . . , u3k/2 and 3k/2 pairwise vertex-disjoint copies of T ′ in which u1, . . . , u3k/2 play the role
of v. See Figure 1 for an example of the definition of T (H). Define t(H) := v(T (H)). It is easy to see
that T (H) is a tree and that

t(H) ≤ 3k(h− k + 1)/2. (4.3)

The following observation follows immediately from the definition of T (H).

Fact 4.7. Let P and Q be two vertex-disjoint copies of T (H) in a graph G, and let p1, . . . , p3k/2 (re-
spectively, q1, . . . , q3k/2) be the vertices of P (respectively, Q) which play the roles of u1, . . . , u3k/2. If
there are α, β, γ, δ ∈ {1, . . . , 3k/2} for which {pα, qβ} , {pγ, qδ} ∈ E(G) and |α− γ| = |β − δ| = k/2− 1,
then G[P ∪Q] contains a copy of H.

As in the odd cycle case, Enforcer arbitrarily partitions V (Kn) into two sets X, Y of sizes bn/2c and
dn/2e, respectively. Enforcer’s strategy has three stages. Roughly speaking, in the first stage Enforcer
makes sure that the maximum degree in Avoider’s graph inside each of the sets X and Y is not large.
We will show that unless there are many H-threats when the first stage ends, the sets X and Y contain
many copies of T (H). The only edges relevant to Enforcer’s strategy in later stages are the edges
connecting these copies of T (H). Thus, in the second stage Enforcer claims all irrelevant free edges,
making sure that they are not free in the third stage. This enables Enforcer to force many H-threats in
the third stage. A precise description of Enforcer’s strategy follows. To make the writing shorter, we
introduce the following notation.

St(z) =

{
{e ∈ E(X) : z ∈ e} for z ∈ X,
{e ∈ E(Y ) : z ∈ e} for z ∈ Y.

Stage I. The first stage starts at the beginning of the game and ends at the moment when there are no
more free edges in E(X) ∪ E(Y ). The stage may end in the middle of Enforcer’s move. In this stage
Enforcer only claims edges from E(X) ∪ E(Y ). In his first round (if he is the first player), Enforcer
claims b arbitrary edges from E(X) ∪ E(Y ). Then in every round he responds to Avoider’s move
as follows. If Avoider claimed an edge in E(X, Y ) then Enforcer claims b arbitrary free edges from
E(X)∪E(Y ). Suppose now that Avoider claimed an edge in E(X)∪E(Y ), say {u, v}. Enforcer claims
bb/2c free edges from St(u) and db/2e free edges from St(v) (the roles of u and v are decided arbitrarily).
If Enforcer cannot follow this rule (for example, if there are less than bb/2c free edges in St(u)) then
Enforcer completes his move by claiming additional arbitrary edges from E(X) ∪ E(Y ).

It is clear that Enforcer can follow his strategy for the first stage. We now show that by following
his strategy, Enforcer succeeds in keeping the maximum degree in GA[X] and GA[Y ] not too high.

Claim 4.8. Throughout the game it holds that ∆ (GA[X]) ≤ 3|X|/(b+1) and ∆ (GA[Y ]) ≤ 3|Y |/(b+1).
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Proof. We only prove the statement for X, as the proof for Y is similar. Let x ∈ X and assume that
dGA[X](x) = d at the end of the first stage. By Enforcer’s strategy, every time Avoider claimed an edge
from St(x), Enforcer immediately claimed at least bb/2c such edges, unless there were less than bb/2c
free edges remaining in St(x), which could only happen at the last time Avoider claimed an edge from
St(x). Therefore Enforcer has claimed at least bb/2c(d− 1) edges from St(x). Since all edges in E(X)
have been claimed by the end of the first stage, we have d+

⌊
b
2

⌋
· (d− 1) ≤ |St(x)| = |X| − 1, implying

that d ≤ (|X| − 1 +
⌊
b
2

⌋
)/(
⌊
b
2

⌋
+ 1) ≤ 2|X|/(b+ 1) + 1 ≤ 3|X|/(b+ 1). �

Now we prove three claims about the position at the end of the first stage. Put gX = |E(GA)∩E(X)|,
gY = |E(GA) ∩ E(Y )| and gX,Y = |E(GA) ∩ E(X, Y )|.

Claim 4.9. If gX,Y ≥ (h−1)n then either Enforcer has already won or there are at least b+1 H-threats.

Proof. Let G′ be the graph whose edges are E(GA) ∩ E(X, Y ). Then e(G′) = gX,Y ≥ (h − 1)n. By

Lemma 4.5, there are at least e(G′)− (h− 2)n ≥ n ≥ b + 1 pairs of vertices {u, v} ∈
(
V (G′)

2

)
such that

G′ ∪
{
{u, v}

}
contains a copy of H in which {u, v} is a cycle-edge. Let {u, v} be such a pair. Since the

cycle in H is even and G′ only contains edges between X and Y , we must have that either u ∈ X and
v ∈ Y or vice versa. Since in the first stage Enforcer only claimed edges from E(X) ∪ E(Y ), the edge
{u, v} is either free or has been taken by Avoider. In the latter case, Avoider’s graph contains a copy
of H, implying that Enforcer has already won. In the former case, {u, v} is an H-threat. We conclude
that unless Enforcer has already won, there are at least b+ 1 H-threats, as required. �

Claim 4.10. If gX,Y < (h− 1)n then gX > 25t(H)|X| and gY > 25t(H)|Y |.

Proof. We only prove the statement for gX , as the proof for gY is symmetric. According to Enforcer’s
strategy in the first stage, if Enforcer claims an edge from E(X) in some round (other than his first, if
he is the first player), then Avoider’s preceding move must have been one of the following types:

(1) Avoider claimed an edge from E(X).
(2) Avoider claimed an edge from E(X, Y ).
(3) Avoider claimed an edge {u, v} ∈ E(Y ) such that after this Avoider’s move there were less than
db/2e free edges in St(u) or less than db/2e free edges in St(v).

For i ∈ {1, 2, 3}, let ai be the number of edges in E(X) that Enforcer claimed after a move of type i by
Avoider. It is clear that a1 ≤ b · gX and a2 ≤ b · gX,Y . Let e1, . . . , e` be the edges claimed by Avoider
in moves of type 3. For i ∈ [`], let yi be an endpoint of ei such that after Avoider claimed ei, there
remained less than db/2e free edges in St(yi). We claim that yi 6= yj for every 1 ≤ i < j ≤ `. Suppose
by contradiction that yi = yj for some i < j. After Avoider claimed ei, Enforcer immediately claimed
all remaining free edges in St(yi), implying that Avoider could not have claimed ej later in the game, a
contradiction. Since y1, . . . , y` are distinct we get that ` ≤ |Y | ≤ dn/2e. Therefore a3 ≤ `·b ≤ (n+1)b/2.

Observe that b + a1 + a2 + a3 + gX ≥
(|X|

2

)
, as the left hand side counts the number of edges in E(X)

claimed by either Avoider or Enforcer when Enforcer is the first player. By this inequality and our
assumption that gX,Y < (h− 1)n, we get that(

|X|
2

)
≤ b+ a1 + a2 + a3 + gX < b+ (b+ 1)gX + (h− 1)nb+ (n+ 1)b/2.

This implies

gX >

(|X|
2

)
− hnb

b+ 1
≥ n|X|

5(b+ 1)
≥ 25 · 3

2
k(h− k + 1)|X| ≥ 25t(H)|X|,

where we used |X| ≥ (n− 1)/2, (4.3) and b+ 1 ≤ n/(200k(h− k + 1)) which holds by assumption. �
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Claim 4.11. Suppose that there are less than b + 1 H-threats at the end of Stage I. Then there are at
least 8(b+ 1) pairwise disjoint copies of T (H) in GA[X] and at least 8(b+ 1) pairwise disjoint copies of
T (H) in GA[Y ].

Proof. Suppose that there are less than b + 1 H-threats in GA. By combining Claims 4.8, 4.9 and
4.10 we get that ∆ (GA[X]) ≤ 3|X|/(b + 1) and e (GA[X]) = gX ≥ 25t(H)|X|. By Lemma 4.6, GA[X]
contains at least

25t(H)|X| − (t(H)− 2)|X|
t(H) · 3|X|/(b+ 1)

≥ 8(b+ 1)

pairwise disjoint copies of T (H). The proof for GA[Y ] is similar. �

Stage II. We may assume that at the beginning of the second stage there are less than b+ 1 H-threats
(because otherwise Enforcer had already achieved his goal). Fixing

r = 8(b+ 1),

Enforcer identifies r pairwise vertex-disjoint copies of T (H) in GA[X], denoted by P1, ..., Pr, and r
pairwise vertex-disjoint copies of T (H) in GA[Y ], denoted by Q1, ..., Qr. This is possible in view of
Claim 4.11. For each 1 ≤ i ≤ r, let pi1, . . . , p

i
3k/2 (respectively, qi1, . . . , q

i
3k/2) be the vertices of Pi

(respectively, Qi) which play the roles of u1, . . . , u3k/2 (recall the definition of T (H)). Define

E∗ =
{
{piα, q

j
β} : 1 ≤ α, β ≤ 3k/2, 1 ≤ i, j ≤ r

}
and

E∗∗ =
{
{piα, q

j
β} : 1 ≤ α, β < k/2, 1 ≤ i, j ≤ r

}
.

In the second stage Enforcer claims arbitrary free edges not belonging to E∗. The second stage ends at
the moment when all remaining free edges are in E∗.
Stage III. In the third stage Enforcer claims arbitrary edges from E∗∗. The third stage ends at the
moment that every edge from E∗∗ has been claimed.

It is clear that Enforcer can follow his strategy for Stages II and III. Let us analyse the position
at the end of Stage III. Let F be the collection of all pairs (i, j) ∈ [r]2 such that Avoider claimed
some edge in

{
{piα, q

j
β} : 1 ≤ α, β ≤ 3k/2

}
. Let (i, j) ∈ F and suppose that Avoider claimed the edge

{piα, q
j
β}. It is easy to see that there are γ and δ such that k/2 ≤ γ ≤ 3k/2, k/2 ≤ δ ≤ 3k/2 and

|α − γ| = |β − δ| = k/2 − 1. By Fact 4.7, adding the edge {piγ, q
j
δ} to GA would create a copy of H

in GA[Pi ∪ Qj]. Since γ, δ ≥ k/2 − 1 we have {piγ, q
j
δ} /∈ E∗∗. Since in the third stage Enforcer only

claimed edges in E∗∗, the edge {piγ, q
j
δ} is either free or has been claimed by Avoider. In the latter case

Avoider’s graph contains a copy of H, implying that Enforcer has already won. In the former case,
{piγ, q

j
δ} is an H-threat. We conclude that either Enforcer has already won or the number of H-threats

is at least |F|.
It remains to show that |F| ≥ b + 1. Let a be the number of edges that Avoider claimed in the

third stage, and note that the number of Enforcer’s moves in the third stage is at most a + 1. Let
m be the number of edges in E∗ that Avoider had claimed in the first and second stages. Then by
the end of the third stage Avoider has claimed a + m edges in E∗. From the definition of E∗, we
see that there are at least (a + m)/(3k/2)2 pairs (i, j) ∈ [r]2 such that Avoider claimed some edge in{
{piα, q

j
β} : 1 ≤ α, β ≤ 3k/2

}
, that is, |F| ≥ (a+m)/(3k/2)2. Recall that Enforcer had not claimed any

edge in E∗ in the first and second stages. Since by the end of the third stage every edge in E∗∗ has
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been claimed, we have a + (a + 1)b ≥ |E∗∗| −m = r2 · (k/2− 1)2 −m ≥ r2k2/16 −m, implying that
a ≥ (r2k2/16−m− b)/(b+ 1). By our choice of r we get that

|F| ≥ a+m

(3k/2)2
≥ r2k2/16−m− b

(3k/2)2(b+ 1)
+

m

(3k/2)2
≥ r2k2/16− b

(3k/2)2(b+ 1)
=

4k2(b+ 1)2 − b
(3k/2)2(b+ 1)

≥ b+ 1,

as required. This completes the proof of the theorem. �

5. Games on blow-ups of a multigraph

In this section, we present the proof of Theorem 1.3. For this purpose we consider some auxiliary
games, played not on the complete graph but on blow-ups of H. In the auxiliary games, in some rounds
the players can select more or less edges than in other rounds. Nonetheless, with a slight abuse of
terminology, we still call them Avoider–Enforcer games.

5.1. The general setup. For a graph H on the vertex set [h] we define a graph BH(V1, V2, . . . , Vh),
called a blow-up of H, as follows. We replace every vertex i of H with an independent set Vi and
every edge {i, j} of H with the corresponding complete bipartite graph, that is, with the set of edges
{xy : x ∈ Vi, y ∈ Vj}.

We will also consider blow-ups of connected multigraphs H containing exactly one cycle, which is
either a loop C1, or a C2 (the multigraph with two vertices joined by two edges). With a little abuse of
terminology, we extend the definition of a unicyclic graph to include such multigraphs. We define the
blow-up BH(V1, V2, . . . , Vh) of such a multigraph similarly to the blow-up of a simple graph. Note that
if C1 ⊆ H, say if i ∈ V (H) has a loop, then all vertices in Vi have loops. Similarly, if C2 ⊆ H, say if
i, j ∈ V (H) are joined by two edges, then E(Vi, Vj) is a multiset such that every pair x ∈ Vi, y ∈ Vj
is joined by two edges. In this case, a couple of edges {e, f} in E(Vi, Vj) with the same ends will be
called friends. In an Avoider–Enforcer H-game on BH(V1, V2, . . . , Vh) the players select edges from the
multiset E(BH(V1, V2, . . . , Vh)) and Avoider tries to avoid a copy of H in her multigraph.

Let H ′ be a submultigraph of a multigraph H and let V (H ′) = {i1, i2, . . . , ir}. A copy of H ′ in
BH(V1, V2, . . . , Vh) is said to be canonical if the vertex playing the role of ij in this copy is from Vij (for
every 1 ≤ j ≤ r). In the Avoider–Enforcer H-game played on BH(V1, . . . , Vh), we call an edge e ∈ E
a canonical H-threat or simply a canonical threat if e is free and there exists a canonical H-copy in
GA ∪ {e} that is not contained in GA.

Throughout Section 5 we assume that h ≥ 2, H is either a tree with the vertex set V (H) = [h], or it is
a unicyclic multigraph with the vertex set V (H) = [h] and (unique) cycle Ck (k ≥ 1) on vertices 1, . . . , k.
Let b and r be two integers such that 0 ≤ r ≤ b. We will only consider the (1 : b) Avoider–Enforcer
game played on BH(V1, . . . , Vh), in which

4h ≤ |Vi| ≤ b/(8h) for every i ∈ [h], and
h∏
i=1

|Vi| >

{
(16h(b+ 1)h)h−1, if H has a cycle,

(16h(b+ 1)h)h−2 maxj |Vj|, if H is a tree.

(5.1)
Additionally, assume that in the first round (and only then) Avoider can select any number of edges of
BH(V1, . . . , Vh) she wishes and Enforcer has to select exactly r edges.

5.2. Proof of Theorem 1.3. In this section we give the proof of Theorem 1.3, modulo Proposition 5.1,
stated below, which says that Enforcer can force many H-threats in the game played on the blow-up
of H. The proof of Proposition 5.1 appears in the next section.
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Proposition 5.1. Assume the setting as introduced in Section 5.1. Then Enforcer has a strategy in
which, at some point, either he has already won or the number of canonical H-threats is at least∏h

i=1 |Vi|
(8h(b+ 1)h)e(H)−1 .

Now, we deduce Theorem 1.3 from the above result.

Proof of Theorem 1.3. Let V (Kn) = V1 t V2 t . . . t Vh be a partition of the vertex set of Kn such
that bn/hc ≤ |Vi| ≤ dn/he for every i ∈ [h]. Consider the blow-up BH(V1, V2, . . . , Vh) ⊆ Kn. Set
γ = 1

16hh(2h)e(H)/(e(H)−1) , and suppose that b is an even number with

8hn ≤ b+ 1 ≤ γne(H)/(e(H)−1) . (5.2)

We split Enforcer’s strategy into two stages.
Stage I. Enforcer picks all free edges that are not edges of the blow-up BH(V1, V2, . . . , Vh), until no such
free edges remain. This stage might end in the middle of Enforcer’s move.
Stage II. In this stage the game is played on BH(V1, V2, . . . , Vh). At the beginning some edges are already
selected by Avoider but there is no edge of Enforcer on the board. Let r ∈ {0, 1, . . . , b} be the number
of edges Enforcer has to select in order to complete his last move of Stage I. Enforcer then uses the
strategy from Lemma 5.1. Let us verify that this is possible. Observe that (5.2) implies 4h ≤ |Vi| ≤ b

8h

for every 1 ≤ i ≤ h. Furthermore, by our choice of γ and (5.2), in case of H with a cycle we have

h∏
i=1

|Vi| >
( n

2h

)h
≥ (16h(b+ 1)h)h−1 ,

and in case H is a tree we have
h∏
i=1

|Vi| >
( n

2h

)h−1
max
j
|Vj| ≥ (16h(b+ 1)h)h−2 max

j
|Vj| .

Therefore we can indeed apply Lemma 5.1. As a consequence, Enforcer has a strategy in which at
some point, either he has already won or the number of threats is not less than∏h

i=1 |Vi|
(8h(b+ 1)h)e(H)−1 >

γe(H)−1nh

(b+ 1)e(H)−1 . �

5.3. Main lemmata and the proof of Proposition 5.1. The idea behind Enforcer’s strategy is
quite simple: he tries to force Avoider to create many trees and then to extend them gradually, till
a copy of H is completed. He can achieve this by following an inductive strategy. The base case is
captured by the following statement, whose proof is given in Section 5.4.

Lemma 5.2 (Base case). Assume the setting as introduced in Section 5.1. Suppose further that b is
even and H = C2. Then Enforcer has a strategy in which, at some point, either he has already won or
the number of C2-threats is not less than

|V1||V2|
4(b+ 1)

.

The following statement, to be proven in Section 5.5, allows Enforcer to reduce a game played on a
blow-up of H to a game on a blow-up of a proper sub(multi)graph of H.

Lemma 5.3 (Inductive step). Assume the setting as introduced in Section 5.1. Suppose further that
h ≥ 3. Then Enforcer has a strategy which guarantees that, at some point, there exist sets V ′i ⊆ Vi for
1 ≤ i ≤ h, a subgraph Fs ⊆ H on s vertices, and a family F of vertex-disjoint canonical copies of Fs in
Avoider’s graph, such that the following conditions are satisfied.
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(P1) V ′i = Vi ∩
⋃
F∈F V (F ) for every i ∈ V (Fs).

(P2) |V ′i | ≥ |Vi|/4 for every i /∈ V (Fs).
(P3) Enforcer has claimed no edges which are incident to vertices in

⋃
i∈V (H)\V (Fs)

V ′i .

(P4) For every F ∈ F there is no Enforcer’s edge with both endpoints in V (F ).

(P5) Either Fs is a loop and |F| ≥ max
ij∈E(H),i 6=j

|Vi||Vj |
64(b+1)h

, or Fs is a non-trivial tree and |F| ≥
∏
i∈V (Fs)

|Vi|
(64(b+1)h)s−1 .

Proof of Proposition 5.1. We will use induction on h. If H is a tree and h = 2, then the assertion
easily follows. If H has a cycle and h = k = 2, the assertion follows immediately from Lemma 5.2. We
next consider the case of a unicyclic H with (h, k) = (2, 1). Let F be the family given by Lemma 5.3.
According to property (P5), F is a matching or a set of loops of size at least |V1||V2|/(64(b + 1)h).
From properties (P2)–(P4), it follows that Avoider’s graph contains either a copy of H, or at least
|V1||V2|/(64(b+ 1)h) = |V1||V2|/(8h(b+ 1)h) canonical H-threats.

Let h ≥ 3 and suppose that the assertion is true for every tree and every unicyclic multigraph on less
than h vertices. We will show that, roughly speaking, Enforcer can force many vertex-disjoint canonical
trees in Avoider’s graph. After contracting some edges of the trees he then can proceed inductively.
Enforcer’s strategy is divided into three stages. In the first he forces many trees, in the second he selects
edges irrelevant for later play, and in the third he applies the inductive argument.
Stage I. Due to Lemma 5.3, Enforcer has a strategy so that at some point there exist vertex-sets V ′i ⊆ Vi
for 1 ≤ i ≤ h, and a family F of vertex-disjoint canonical copies of some Fs ⊆ H in Avoider’s graph,
which satisfy properties (P1)–(P5). Suppose first that Fs is a tree on h vertices. If Fs = H then
Enforcer had already won (as there is a copy of Fs = H in Avoider’s graph), so we assume from now
on that Fs 6= H, namely that H is unicyclic. Then e(H) = h = s. In view of (P5), we have

|F| ≥
∏h

i=1 |Vi|
(64(b+ 1)h)e(H)−1 >

∏h
i=1 |Vi|

(8h(b+ 1)h)e(H)−1 .

If there is no copy of H in Avoider’s graph yet, then every tree in F is a canonical threat, by (P4).
Thus the proposition follows, and we do not have to proceed to Stage II.

From now on we assume that Fs is not a tree on h vertices, that is, V (Fs) ( V (H). The game
proceeds to the next stage.
Stage II. If Fs is a tree, we say that an edge e ∈ E(V ′i , V

′
j ) is important if {i, j} ∩ (V (H) \ V (Fs)) 6= ∅,

or ij ∈ E(Ck) \ E(Fs) and the ends of e belong to the same tree in F (e may be a loop).
If Fs is a loop, we define important edges differently. Suppose that x ∈ V (H) is the only vertex

of H having a loop, and fix an arbitrary y ∈ V (H) \ {x} such that xy ∈ E(H) (such a y exists
because H is connected). Let M be a matching in E(V ′x, V

′
y) of size at least |Vx||Vy|/(256(b + 1)h).

Such a matching exists because |V ′x| = |F| ≥ |Vx||Vy|/(64(b + 1)h) by properties (P1) and (P5), and
|V ′y | ≥ |Vy|/4 > |Vx||Vy|/(64(b + 1)h) due to (P2) and (5.1). Let V ′′x = V ′x ∩ V (M), V ′′y = V ′y ∩ V (M),
and V ′′i = V ′i for every i ∈ V (H) \ {x, y}. We call all edges in M∪

⋃
ij∈E(H)\{xy}E(V ′′i , V

′′
j ) important.

In Stage II Enforcer selects all free edges that are not important. The stage might end in the middle
of Enforcer’s move.
Stage III. At the beginning of this stage, the set of important edges contains every free edge, and in
view of (P3), (P4) and Enforcer’s strategy in the second stage, Enforcer has claimed no edges in this
set. We are going to reduce the target graph H and for this purpose we consider two cases.

Case 1: Fs is a tree.
Without loss of generality we can assume that V (Fs) = [s] (here we make an exception to

the convention that 1, . . . , k are the vertices of the unique cycle in H, if there is one). We
contract every tree in F to a vertex, and consider a blow-up BH′(V ′s , V ′s+1, . . . , V

′
h) of the graph

H ′ obtained from H by contracting Fs to the vertex s. Note that if Fs contains an edge e of a
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C2, then the friend of e becomes a loop in H ′. Observe that H ′ is unicyclic if H is unicyclic, and
H ′ is a tree if H is a tree. Every edge of BH′(V ′s , V ′s+1, . . . , V

′
h) is either selected by Avoider or it

was an important edge in BH(V ′s , V
′
s+1, . . . , V

′
h) and thus it has not been selected by Enforcer.

To prove the lemma, it suffices to show that Enforcer has a strategy in the (1 : b) H ′-game
played on BH′(V ′s , V ′s+1, . . . , V

′
h), which forces either a copy of H ′ in Avoider’s graph or at least∏h

i=1 |Vi|
(8h(b+ 1)h)e(H)−1

canonical H ′-threats.
Case 2: Fs is a loop.

We can assume that the vertices x and y of H considered in Stage II are equal to 1 and 2,
respectively. Recall that the edge-setM defined in Stage II is a perfect matching in E(V ′′1 , V

′′
2 ).

We glue together the ends of every edge e inM (turning e into a loop), delete all the loops in F ,
and consider a blow-up BH′(V ′′2 , V ′′3 , . . . , V ′′h ) of H ′, which is the unicyclic graph obtained from
H by contracting the edge {1, 2} to a vertex. As in Case 1, to prove the lemma, it is enough to
show that Enforcer has a strategy in the (1 : b) H ′-game played on BH′(V ′′2 , V ′′3 , . . . , V ′′h ), which

guarantees either a copy of H ′ in Avoider’s graph or at least
∏h
i=1 |Vi|

(8h(b+1)h)e(H)−1 canonical H ′-threats.

We will prove that the induction hypothesis can be applied to H ′ in both cases. We only consider
Case 1, as the argument for Case 2 is the same as for the special case of Case 1 in which H has a cycle,
s = k = 2 and the C2 in H coincides with the edge being contracted.

So our goal now is to show that (5.1) holds for H ′ and the sets V ′s , . . . , V
′
h. Since (5.1) holds for H,

we have |V ′i | ≤ |Vi| ≤ b/(8v(H)) ≤ b/(8v(H ′)) for every i ∈ {s, . . . , h}. From (P2) and (5.1), we know
that |V ′i | ≥ |Vi|/4 ≥ 4h−1 ≥ 4v(H

′) for i ∈ {s+ 1, . . . , h}. By (P5), (5.1) and h ≥ 3, we have

|V ′s | = |F| ≥
∏s

i=1 |Vi|
(64(b+ 1)h)s−1

>

∏h
i=1 |Vi|

(64h)s−1(b+ 1)h−2|Vh|
≥ (16h(b+ 1)h)h−2 maxj |Vj|

(64h)s−1(b+ 1)h−2|Vh|
> 4h−1 ≥ 4v(H

′).

Finally, as |V ′i | ≥ |Vi|/4 for every s+ 1 ≤ i ≤ h, and as |V ′s | = |F| ≥
∏s
i=1 |Vi|

(64(b+1)h)s−1 , v(H ′) = h− s+ 1 and

h ≥ 3, in the case that H is unicyclic it holds that

h∏
i=s

|V ′i | ≥
∏h

i=1 |Vi|
(64(b+ 1)h)s−14h−s

(5.1)
>

(16h(b+ 1)h)h−1

(64(b+ 1)h)s−14h−s
> (16v(H

′)(b+ 1)v(H ′))v(H
′)−1,

and in the case that H is a tree it holds that

h∏
i=s

|V ′i | ≥
∏h

i=1 |Vi|
(64(b+ 1)h)s−14h−s

(5.1)
>

(16h(b+ 1)h)h−2 maxj |Vj|
(64(b+ 1)h)s−14h−s

> (16v(H
′)(b+ 1)v(H ′))v(H

′)−2 max
j
|Vj|.

Thus, we have proven that the induction hypothesis can be applied to H ′. By the induction hypothesis
Enforcer has a strategy such that at some point, either there is a canonical copy of H ′ in Avoider’s
graph, or the number of canonical H ′-threats is at least∏h

i=s |V ′i |
(8h−s+1(h− s+ 1)(b+ 1))e(H′)−1

≥
∏h

i=1 |Vi|
(8h−s+1(h− s+ 1)(b+ 1))e(H′)−1 · (64(b+ 1)h)s−14h−s

>

∏h
i=1 |Vi|

(8hh(b+ 1))e(H)−1 . �
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5.4. The base case. Here we provide a self-contained proof for the base case.

Proof of Lemma 5.2. Suppose that after the first move of Avoider there is no copy of C2 in her
multigraph. Let X be the set of all vertices of V1 isolated in Avoider’s multigraph after her first move.
If |X| ≤ |V1|/2, then the number of threats is at least

|V1 \X| ≥ |V1|/2
(5.1)
> |V1||V2|/(2b),

and the assertion follows. From now on we assume that |X| > |V1|/2. Let

T =
|V1||V2|
4(b+ 1)

.

From the definition of X we see that every edge of the multiset E(X, V2) is free. Furthermore, we have
|E(X, V2)| = 2|X||V2| > |V1| · |V2| = 4(b+ 1)T . Thus the number of rounds in the game is greater than
4T . Note that T > 1, by (5.1). Furthermore there are |E(X, V2)|/2 > 2(b+ 1)T free couples of friends.

Enforcer plays as follows. In the first round he begins by picking br/2c free couples of friends. After
that he has either zero edges or one edge left to take, depending on the parity of r. If r is odd, Enforcer
finishes the move by picking an arbitrary edge in E(X, V2), say e. Denote the friend of e by f and note
that f is the only free edge in E(X, Y ) whose friend has been selected by Enforcer. Any other free
edge is either a threat or has a free friend. If r is even, then every free edge is either a threat or has a
free friend. Avoider in her response must create a new threat or, if r is odd, select f (we assume that
Avoider never selects a threat, as this would lose the game).

In the next 2bT c rounds, Enforcer always picks b/2 free couples of friends. Recall that b is even and,
as mentioned above, there are enough free couples to play in this way. In every round Avoider will
create a new threat, with only one possible exception, that is, when she selects f . We conclude that
the number of threats created in the game is at least 2bT c > T . �

5.5. The inductive step. In this section we provide the (long) proof of Lemma 5.3. To simplify the
presentation, we first introduce some notation.

Definition 5.4. We colour an edge green if and only if it is not a loop and it was claimed by Avoider
in her second or later round. At any moment of the game we call a subgraph of Avoider’s graph green
if it is non-empty and all of its edges are green. Throughout the game we denote by G the green graph,
that is, the graph induced by the set of green edges. Note that G has no isolated vertices and no loops.
A connected component of G is called a green component. If H contains a cycle, we denote by Gk the
subgraph of G induced by the set of all green edges with both endpoints in

⋃k
i=1 Vi. In other words, Gk

is induced by the set of green edges in the blow-up of the cycle Ck.

Proof of Lemma 5.3. For each edge ij ∈ E(H) with i 6= j, let

mi,j =
⌈ |Vi||Vj|

64(b+ 1)h

⌉
.

Note that mi,j > 1, as by (5.1), in case of H with a cycle we have

|Vi||Vj| ≥
(16h(b+ 1)h)h−1

(b/8h)h−2
≥ 256(b+ 1)h,

while if H is a tree, then for t ∈ [h] \ {i, j} we have

|Vi||Vj| ≥
(16h(b+ 1)h)h−2|Vt|
|Vt|(b/8h)h−3

≥ 256(b+ 1)h.

Thus in both cases
|Vi||Vj| ≥ 256(b+ 1)h for every i 6= j. (5.3)
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Let ij be an arbitrary edge in H with i 6= j. Avoider starts the game. After her first move we denote
byMi,j a maximal matching (possibly empty) formed by Avoider’s edges in E(Vi, Vj). Let Ui and Uj be
the sets of all vertices saturated by Mi,j in Vi and Vj respectively. If |Mi,j| ≥ mi,j, we define V ′i = Ui,
V ′j = Uj, and V ′r = Vr for r 6= i, j. These vertex sets and the family F = Mi,j of paths of length 1
clearly possess the required properties (P1)–(P5). So from now on we can assume

|Mi,j| < mi,j for every ij ∈ E(H) with i 6= j. (5.4)

Fix {`, t} ∈ E(H) such that ` 6= t and m`,t = maxij∈E(H),i 6=jmi,j. Since M`,t is a maximal matching,
Avoider has no edges between V` \ U` and Vt \ Ut. Furthermore, we learn from (5.4) and (5.1) that
|V` \U`| ≥ |V`|−m`,t ≥ 3|V`|/4. Similarly, |Vt \Ut| > 3|Vt|/4. Thus we can find two subsets W` ⊆ V` \U`
and Wt ⊆ Vt \Ut of sizes b|V`|/2c and b|Vt|/2c, respectively. We call the edge-set E(W`,Wt) the dustbin.

In what follows we first present Enforcer’s strategy separately for graphs H with a loop or without a
cycle, with a cycle C2, and with longer cycles. We then analyse the properties of Avoider’s graph.

Case 1: H is a tree or H has a loop.
In his first move Enforcer selects r arbitrary edges from the dustbin. Starting with the second round,

Enforcer responds to Avoider’s move e ∈ E(Vi, Vj) in the following way. If i = j = 1 and there are
5h ·m`,t loops in V1 which have been claimed by Avoider, or if i 6= j and there are 4mi,j green edges in
E(Vi, Vj), then Enforcer stops the game. Otherwise he plays as follows.

(a) Enforcer selects all free edges in E(Vi, Vj) which are incident to e.
(b) For every vertex v in the green components other than the green component containing e, Enforcer

claims all free edges between v and e.
(c) If Enforcer still has to choose more edges, he picks them from the dustbin E(W`,Wt).

Note that items (a) and (b) only apply if e is not a loop. The following claim details the outcome of
the game in Case 1.

Claim 5.5. Enforcer can follow the strategy described above. Moreover, throughout the game, the green
graph G has the following properties.

(i) The edge-set E(G) ∩ E(Vi, Vj) is a matching for every edge ij ∈ E(H) with i 6= j.
(ii) Before every Avoider’s move there is no free edge between distinct green components.

(iii) Enforcer has selected no loops.
(iv) Every green component is a canonical copy of a subgraph of H.
(v) Every edge selected by Enforcer is incident to a green edge or belongs to the dustbin.

Proof. It is straightforward from Enforcer’s strategy that, during the game, the green graph G satisfies
conditions (i)–(v).

We now show that he can follow the strategy. Indeed, he can easily follow rules (a) and (b) because
the number of edges incident to e is at most 2hmaxr∈[h] |Vr| < b, due to (5.1). To prove that Enforcer
can follow (c), it suffices to show that at every moment of the game until it stops, the dustbin contains
at least b free edges. Because the number of edges claimed by Avoider from the second round onward
is at most 5h ·m`,t +

∑
ij∈E(H) 4mi,j ≤ 9h ·m`,t (due to Enforcer’s stopping condition), the number of

free edges in the dustbin is at least

|W`||Wt| − r − 9(b+ 1)h ·m`,t ≥
15|V`|

32
· 15|Vt|

32
− b− 9(b+ 1)h ·

(
|V`||Vt|

64(b+ 1)h
+ 1

)
(5.3)

≥ b+

(
152

322
− 9

64
− 10

256

)
|V`||Vt| > b,
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where in the first inequality we estimate |W`| = b |V`|2 c ≥
15|V`|
32

for |V`| ≥ 16, and |Wt| ≥ 15
32
|Vt|. �

We next present Enforcer’s strategy in the case when H has a C2.

Case 2: C2 ⊆ H.
By symmetry, we only need to handle the cases {`, t} 6= {1, 2} and (`, t) = (1, 2).

Case 2.a: {`, t} 6= {1, 2}.
In his first move Enforcer selects r arbitrary edges from the dustbin. Starting with the second round,

Enforcer responds to Avoider’s move e ∈ E(Vi, Vj) in the following way. If the number of green edges in
E(Vi, Vj) is at least 4mi,j, then Enforcer stops the game. Otherwise, he plays according to the following
strategy.

(a) Enforcer selects all free edges f ∈ E(Vi, Vj) such that |e ∩ f | = 1.5

(b) For every vertex v in green components other than the green component containing e, Enforcer
selects all free edges between v and e.

(c) If Enforcer still has some edges to choose, he selects them from the dustbin E(W`,Wt).

Case 2.b: (`, t) = (1, 2).
Since by assumption H 6= C2 and H is connected, we can assume that {2, 3} ∈ E(H). Due to (5.1)

and (5.4), there exist two subsets W ′
2 ⊆ V2, W

′
3 ⊆ V3 with b|V2|/8c and b|V3|/8c vertices, respectively,

such that Avoider has no edges in E(W ′
2,W

′
3). (The argument for the existence of W ′

2 and W ′
3 is the

same as the one used for the sets W` and Wt). We call the edge-set E(W ′
2,W

′
3) the remainder-bin.

Enforcer plays as follows. In the first round he begins by picking br/2c free couples of friends in the
dustbin E(W`,Wt) = E(W1,W2). If r is odd, Enforcer finishes this round by picking an arbitrary edge
in the remainder-bin E(W ′

2,W
′
3). From the second round onward, Enforcer responds to Avoider’s move

e ∈ E(Vi, Vj) as follows. If the number of green edges in E(Vi, Vj) is at least 4mi,j, then Enforcer again
stops the game. If this is not the case, he plays according to the following strategy.

(a) Enforcer selects all free edges f ∈ E(Vi, Vj) with |e ∩ f | = 1.
(b) For every vertex v in green components other than the green component containing e, Enforcer

selects all free edges between v and e.
(c) If Enforcer still has some, say s, edges to choose, he selects bs/2c free couples of friends in E(W1,W2).

After this, he must take either zero edges or one edge, depending on the parity of s.
(d) If Enforcer has to choose one more edge, he picks an arbitrary edge in E(W ′

2,W
′
3).

Claim 5.6. Enforcer can follow the strategies described in Cases 2.a and 2.b. Moreover, during the
game, the green graph G has the following properties.

(i) The edge-set E(G)∩E(Vi, Vj) is a matching for every {i, j} 6= {1, 2}, and E(G)∩E(V1, V2) consists
of pairwise-disjoint edges and copies of C2.

(ii) Before every Avoider’s move there is no free edge between distinct green components.
(iii) If an edge in E(V1, V2) is green, then its friend is not selected by Enforcer.
(iv) Every green component is a canonical copy of a subgraph of H.
(v) Every edge selected by Enforcer is incident to a green edge, or belongs to the dustbin or to the

remainder-bin.

Proof. It is easy to see that if Enforcer can carry out his game plan, then the green graph satisfies
Properties (i)–(v). The proof that Enforcer can follow rules (a)–(c) in both cases is exactly as in Claim
5.5, which we need not repeat here.

To complete the proof, we show that at every step of the game until it stops, the remainder-bin
E(W ′

2,W
′
3) contains at least one free edge; this will clearly imply that Enforcer can perform (d) in Case

5In particular, Enforcer will not pick the friend of e if e ∈ E(V1, V2).
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2.b. For i = 2, 3, let W ′′
i be the set of all vertices of W ′

i not incident to green edges. First observe that
due to the stopping condition, the number of endpoints of green edges in Vi is at most∑

j: ij∈E(H)

4mi,j <
∑

j: ij∈E(H)

8|Vi||Vj|
64(b+ 1)h

(5.1)
< |Vi|/64.

Thus |W ′′
i | > b|Vi|/8c − |Vi|/64 ≥ 3|Vi|/64. Furthermore, the number of edges selected by Enforcer in

E(W ′′
2 ,W

′′
3 ) is not greater than 1 +

∑
ij∈E(H) 4mi,j ≤ 1 + 4h ·m1,2, since in every round Enforcer selects

at most one edge in E(W ′′
2 ,W

′′
3 ); indeed, he only selects an edge in E(W ′′

2 ,W
′′
3 ) when he invokes rule

(d) in Case 2.b. Therefore the number of free edges in the remainder-bin is not less than

|W ′′
2 | · |W ′′

3 | − 1− 4h ·m1,2 >
9|V2| · |V3|

212
− |V1| · |V2|

4(b+ 1)

(5.1)
>

9|V2| · 4h

212
− |V2|

32
≥ 0.

Hence the remainder-bin contains a free edge. �

Finally we describe Enforcer’s strategy in the case when the unique cycle of H has length k ≥ 3.
Case 3: Ck ⊆ H and k ≥ 3.

In the first round Enforcer selects r arbitrary edges from the dustbin. In each subsequent round,
Enforcer responds to Avoider’s move xy ∈ E(Vi, Vj) in the following way. He stops the game if there
are 4mi,j green edges in E(Vi, Vj) and otherwise he proceeds as follows.

(a) Enforcer selects all free edges in E(Vi, Vj) which are incident to xy.
(b) For every vertex v in green components other than the green component containing xy, Enforcer

selects all the free edges among xv and yv.
(c) Suppose that the green component of Gk containing xy is a canonical path P on k vertices. If

u ∈ Vs and w ∈ Vs+1 (mod k) are the endpoints of P for some s ∈ [k], then Enforcer selects all free
edges in E(Vs, Vs+1 (mod k)) \ {uw} which are incident to uw.

(d) Suppose that the green component of Gk containing xy is a canonical path P on k− 1 vertices. Let
s ∈ [k] be such that Vs ∩ V (P ) = ∅, let u ∈ Vs−1 (mod k) and w ∈ Vs+1 (mod k) be the endpoints of P ,
and suppose that {u,w} ∩ (W` ∪Wt) 6= ∅. Then Enforcer selects all free edges between {u,w} and
Vs ∩ (W` ∪Wt).

(e) If Enforcer still has some edges to choose, he selects them from the dustbin E(W`,Wt).

The following claim summarises the effects of Enforcer’s strategy.

Claim 5.7. Enforcer can follow the above strategy. Furthermore, the green graph G has the following
properties throughout the game.

(i) The edge-set E(G) ∩ E(Vi, Vj) is a matching for every ij ∈ E(H).
(ii) Before every Avoider’s move there is no free edge between distinct green components.
(iii) Let e = uw be Enforcer’s edge and suppose that e ∈ E(Vi, Vj). Then at least one of the following

holds.
(a) There is a green edge in E(Vi, Vj) which is incident to e.
(b) u,w ∈ V (G).
(c) i, j ∈ [k] and there is a canonical green path on k vertices in Gk between Vi and Vj (in

particular, j − i ≡ ±1 mod k), one of whose endpoints is u or w.
(d) u is an endpoint of a green path on k − 1 vertices in Gk and w ∈ W` ∪Wt, or vice versa.
(e) e ∈ E(W`,Wt).

In particular, either e ∈ E(W`,Wt) or e is incident to a green edge.
(iv) Every component of Gk has at most k vertices.
(v) No Enforcer’s edge has both ends in the same component of Gk.
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Proof. In much the same way as in the proof of Claim 5.5, we learn that Enforcer can follow the strategy.
It remains to show that the green graph satisfies properties (i)–(v).

Properties (i) and (ii) follow immediately from rules (a) and (b), respectively. These two properties
and the fact that H is unicyclic imply that at every moment:

• the graph Gk is a union of vertex-disjoint non-trivial paths and cycles;
• if a path in Gk has k vertices or less, then it is a canonical path;
• every green cycle has at least k vertices, and if it has exactly k vertices, then it is a canonical

cycle;
• if there is no path on k+ 1 vertices in Gk, then every green component of G is a canonical copy

of a subgraph of H;
• Avoider cannot decrease the number of green components nor the number of Gk.

We will use these observations implicitly many times in the proof. Properties (iii) (a) – (iii) (e) follow
immediately from rules (a) – (e) in Enforcer’s strategy.

We now prove property (iv) by induction on the number of rounds in the game. After the first round
there are no green edges, so the assertion is trivial. Suppose that the assertion is true until the end
of some round and consider Avoider’s next move, say xy ∈ E(Vi, Vi+1), where x ∈ Vi and y ∈ Vi+1,

and indices are taken modulo k (if Avoider claims an edge outside of
⋃k
i=1E(Vi, Vi+1) then this clearly

does not affect property (iv)). To prove that property (iv) holds after Avoider’s move xy, assume by
contradiction that the component of Gk containing xy has more than k vertices. By the induction
hypothesis, (iv) held before Avoider’s move xy. Moreover, since Avoider cannot join two Gk, either x
or y, say y, was not incident to an edge of Gk before the move xy. This implies that the component of
Gk containing xy has k+ 1 vertices (so it is a path), and that before Avoider’s move xy, the component
of Gk containing x was of size k. By property (i), this component had to be a canonical path x1, . . . , xk
in which x is an endpoint, say x = x1 ∈ Vi, and the other endpoint xk is in Vi+1. Consider the time just
after the last edge e of the path x1, . . . , xk was claimed by Avoider. At that time, the path x1, . . . , xk
was the green component of Gk containing e. By rule (c) of Enforcer’s strategy, he then claimed all
edges between Vi and Vi+1 other than x1xk, including the edge xy. Hence xy could not have been
claimed by Avoider at a later time, a contradiction.

To finish the proof of the claim, we now derive property (v) from properties (i)–(iv). Assume to the
contrary that the endpoints of some Enforcer’s edge uv are in the same component of Gk, and suppose
that u ∈ Vi and v ∈ Vi+1, with indices taken modulo k. Since every component of Gk is a canonical
path or cycle, the component of Gk containing u, v is a canonical green path u, x2, . . . , xk−1, v. We will
consider several cases, depending on the rule according to which Enforcer selected uv.

If uv were selected according to rule (a), then there must be an Avoider’s edge in E(Vi, Vj) which is
incident to either u or v. But then the green component of Gk containing u, v has at least k+1 vertices,
which contradicts (iv).

If uv were selected according to rule (b), then at some point in the game, u and v were in different
green components. However, as u and v are in the same green component at the end, Avoider must
have joined these two components, which is impossible.

If uv were selected according to rule (c), then at the moment just before it was claimed, in Gk there
was a k-vertex path between Vi and Vi+1 with one endpoint in {u, v} and the other not in {u, v}. This
implies that the component of Gk containing u, v has at least k + 1 vertices, in contradiction to (iv).

Suppose that uv were selected according to rule (e), and assume without loss of generality that
u ∈ W` and v ∈ Wt. Consider the edge of the path u, x2 . . . , xk−1, v that Avoider claimed the latest.
Since Avoider cannot join Gk, this edge must be either ux2 or xk−1v; assume without loss of generality
that it is ux2. Consider the situation immediately after Avoider claimed the last edge e of the path
P = x2, x3, . . . , xk−2, xk−1, v. At that time, P was the component of Gk containing e, V (P )∩Vi = ∅ and
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v ∈ Wt. According to rule (d) of his strategy, Enforcer immediately claimed all edges in E({x2, v},W`),
including ux2. Hence Avoider could not have claimed ux2 at a later time, a contradiction.

Assume that uv were selected according to rule (d), and consider the situation immediately before
Enforcer’s turn in which he claimed uv. Without loss of generality, we may assume that v ∈ W` ∪Wt,
and that at this time in the game, the component of Gk containing u is a canonical (k− 1)-vertex path
P satisfying Vi+1 ∩ V (P ) = ∅. In particular, the edge xk−1v must be free at this time. By property (i),
we must have P = u, x2, . . . , xk−1. By rule (d), Enforcer must claim the edge xk−1v at the same turn
he claims uv, contradicting the fact that Avoider claimed xk−1v. �

We are now in a position to finish the proof.
Deriving the lemma from Claims 5.5–5.7. Let G denote the green graph at the end of the game.
According to the stopping condition, we know that |E(G) ∩ E(Vi, Vj)| ≤ 4mi,j for all ij ∈ E(H), and
either Avoider’s graph contains at least 5h · m`,t loops or |E(G) ∩ E(Vi, Vj)| = 4mi,j for some pair
ij ∈ E(H) with i 6= j. So the proof falls naturally into two cases.

Let us first consider the case when Avoider’s graph has at least 5h ·m`,t loops. In particular, we must
have k = 1. Let F be the set of all loops in Avoider’s graph whose endpoints are not incident to a green
edge. Define V ′1 = V (F), and V ′i = Vi \ (V (G) ∪W` ∪Wt) for every i > 1. Due to the construction,
property (P1) is satisfied.

We next verify (P2). Fix i ∈ {2, . . . , h}. The number of green edges incident to vertices of Vi is at
most ∑

j: ij∈E(H)

4mi,j <
∑

j: ij∈E(H)

8|Vi||Vj|
64(b+ 1)h

< |Vi|/8,

where we used (5.1). Furthermore, |Vi ∩ (W` ∪Wt)| = max{|Vi ∩W`|, |Vi ∩Wt|} ≤ |Vi|/2. Hence, we
have |V ′i | = |Vi \ (V (G) ∪W` ∪Wt)| > |Vi| − |Vi|/2− |Vi|/8 > |Vi|/4, as required.

Properties (P3) and (P4) are direct consequences of Claim 5.5 (v) and Claim 5.5 (iii), respectively.
Finally, property (P5) holds since

|F| ≥ 5h ·m`,t −
∑

1j∈E(H),j>1

4m1,j ≥ h ·m`,t ≥ max
ij∈E(H),i 6=j

|Vi||Vj|
64(b+ 1)h

.

For the rest of the proof, we consider the case when |E(G)∩E(Vi, Vj)| = 4mi,j for some pair ij ∈ E(H)
with i 6= j. Fix such a pair i, j. From Claims 5.5 (i), 5.6 (i) and 5.7 (i), it follows that E(G)∩E(Vi, Vj)
contains a matchingM of size 2mi,j. Let s be the greatest number such that there exists a tree Ts ⊆ H
on s vertices, and a family F0 of at least

2
∏

i∈V (Ts)
|Vi|

(64(b+ 1)h)s−1

vertex-disjoint canonical green copies of Ts in BH(V1, . . . , Vh). Clearly s ≥ 2 because M is a family
of trees on two vertices with the required property. Let F be the family of all trees in F0 which are
maximal in G, where a tree in F0 is maximal if it is not contained in a canonical copy of some tree
Ts ( T ⊆ H. For every i ∈ V (Ts), set V ′i = Vi ∩

⋃
F∈F V (F ). For i /∈ V (Ts), define

V ′i =

{
Vi \ (V (G) ∪W1 ∪W2 ∪W ′

2 ∪W ′
3) if k = 2 and {`, t} = {1, 2},

Vi \ (V (G) ∪W` ∪Wt) otherwise.

Property (P1) is obvious from the definitions. By a similar argument as in the previous case, we
can show that property (P2) holds. The only difference in calculations here is the case that k = 2 and
{`, t} = {1, 2}. In this case, if 2 /∈ V (Ts) then

|V ′2 | ≥ |V2| − |V2 ∩ V (G)| − |W2| − |W ′
2| > |V2| − |V2|/8− |V2|/2− |V2|/8 = |V2|/4.
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Property (P4) follows immediately from Claims 5.5 (iii), 5.6 (iii) and 5.7 (v), and the fact that the
trees in F are canonical.

Next we verify property (P3). For simplicity of exposition, we assume that k ≥ 3, as the proofs for
the cases k = 1 and k = 2 are similar (and much easier). Suppose to the contrary that Enforcer has
occupied an edge uw ∈ E(V ′i , V

′
j ) (where u ∈ V ′i and w ∈ V ′j ) with ij ∈ E(H) and j ∈ V (H) \ V (Ts).

Suppose first that i /∈ V (Ts). Then u,w /∈ V (G) ∪W` ∪Wt by the definition of V ′i and V ′j . In view
of Claim 5.7 (iii), the edge uw was not selected by Enforcer, a contradiction. Suppose, then, that
i ∈ V (Ts). In this case, u ∈ V ′i is a vertex of a green tree in F , and w /∈ W` ∪Wt ∪V (G). Since trees in
F are maximal in G, there are no green edges in E(Vi, Vj) that are incident to u. As w /∈ W`∪Wt∪V (G),
it follows that uw /∈ E(W`,Wt) and uw is not incident to a green edge in E(Vi, Vj). Claim 5.7 (iii) thus
implies that i, j ∈ [k] and u is an endpoint of a canonical k-vertex path P in Gk between Vi and Vj.
Since i ∈ V (Ts) and j ∈ V (H) \ V (Ts), the tree F ∈ F containing u can be extended to a canonical
copy of some tree Ts ( T ⊆ H by adding vertices of the path P . This contradicts the maximality of F .

It remains to verify property (P5). If V (Ts) = V (H), then |F0| = |F| >
∏
i∈V (Ts)

|Vi|
(64(b+1)h)s−1 as required. Now

suppose that V (Ts) 6= V (H). Fix a tree T such that Ts ⊂ T ⊂ H and V (T ) \ V (Ts) = {j}. By Claims
5.5 (i), 5.6 (i) and 5.7 (i), every two canonical green copies of T in BH(V1, . . . , Vh) are vertex-disjoint.
By the maximality of s, the number of canonical green copies of T in BH(V1, . . . , Vh) is less than

2
∏

i∈V (T ) |Vi|
(64(b+ 1)h)s

≤ |Vj||F0|
64(b+ 1)h

(5.1)
<
|F0|
64h

.

Thus the number of trees in F0 which are not maximal in G is at most e(H) · |F0|
64h

= |F0|
64

, giving

|F| > 1
2
|F0| ≥

∏
i∈V (Ts)

|Vi|
(64(b+ 1)h)s−1

.

The proof of Lemma 5.3 is at long last complete. �

6. Concluding remarks and open problems

We have proved that f−H (n) = Θ
(
n1/m(H)

)
for every graph H with at least two edges and m(H) ≤ 1.

We believe that this is true for every (not necessarily connected) graph with at least two edges.

Conjecture 6.1. For every graph H with at least two edges, one has

f−H (n) = Θ
(
n

1
m(H)

)
.

In order to prove this conjecture, it is enough to find a good strategy for Enforcer, since Avoider’s
part follows from Theorem 1.1.

As for the upper threshold of the H-game, the problem seems more complicated. We showed that
for unicyclic graphs H, the upper threshold f+

H (n) is of order nv(H)/(v(H)−1) for infinitely many values of
n. We conjecture that this is the correct order for all values of n. This problem is open even if H is a
triangle and seems to require a major strengthening of the number theoretic tools.

Conjecture 6.2. For every unicyclic graph H, one has

f+
H (n) = Θ

(
n

v(H)
v(H)−1

)
.

We believe that for general graphs H, the order of the upper threshold cannot always be expressed
by a simple formula which depends only on the number of vertices and edges of H and, possibly, the
parameters m(H) and m′(H). Let H − e denote the graph obtained from H by deleting its edge e
(together with a vertex of degree one, if this vertex is an end of e). We pose the following conjecture.
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Conjecture 6.3. For every graph H with at least three edges, one has

f+
H (n) = Θ

(
max
e∈H

f−H−e(n)
)
.

In view of (1.1), Conjecture 6.3 is true for stars. From (1.2), Theorems 1.1, 1.2 and 1.4(iii), we see
that it also holds for infinitely many values of n in the case of unicyclic graphs.

Finally, let us comment on the monotone version of Avoider–Enforcer games, introduced in [9]. Recall
that in a monotone (1 : b) Avoider–Enforcer game, the players select at least 1 and at least b board
elements per turn, respectively, and the threshold of the game is the greatest b such that Enforcer has
a winning strategy. Our strategy for Enforcer, presented in Section 5, can be applied to monotone
H-games as well, though the analysis is slightly more complicated. This way, in view of a general upper
bound on the threshold fmon

H (n) in monotone Avoider–Enforcer H-games proved in [3], one can obtain

that if H is a unicyclic graph, then fmon
H (n) = Θ

(
n

v(H)
v(H)−1

)
.
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Appendix A. Number theoretic tools: Proofs

In this appendix we provide the proofs of Lemmata 3.2, 3.3 and 3.4.

Proof of Lemma 3.3. Let r1 and r2 be two natural numbers such that r1/r2 = α if α ≤ 1, and
r1/r2 = α − 1 if 1 < α ≤ 2. Suppose that C ∈ N is some large constant. For every odd integer k ≥ 1,
we put n = 2(Ck)r2 + 2, and define q = kr1 if α ≤ 1 and q = (n + 1)kr1 if 1 < α ≤ 2. By a simple
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calculation one can verify that nα/(4Cr1) ≤ q ≤ 2nα/Cr1 . Moreover, q is odd, and q |
(
n
2

)
− 1 since(

n
2

)
− 1 = (n+ 1)(n− 2)/2 . �

Proof of Lemma 3.4. Define x = b1
2
cnα−1c if b1

2
cnα−1c is odd, and x = b1

2
cnα−1c − 1 if b1

2
cnα−1c is

even. Pick k ∈ {1, 2, . . . , 2x} so that n−k−1 is divisible by 2x. In particular, n+k is odd. Let t =
(
k+1
2

)
and q = (n + k)x. As n + k and x are odd, so is q. Moreover, q ≤ (n + cnα−1)cnα−1/2 < cnα, and
q ≥ n · (1

2
cnα−1 − 2) > 1

3
cnα for sufficiently large n. Finally, we have t ≤ (cnα−1 + 1)cnα−1/2 < c2n2α−2

for n sufficiently large, and q |
(
n
2

)
− t since

(
n
2

)
− t = (n+ k)(n− k − 1)/2 and 2x | n− k − 1. �

The rest of this section is devoted to the proof of Lemma 3.2. Given integers s ≥ 1 and m, we define
rs(m) as the unique integer j such that −s/2 < j ≤ s/2 and m ≡ j mod s. It is easy to see that

|rs(m+m′)| ≤ |rs(m)|+ |rs(m′)| and |rs(m)| ≤ |rs(m+m′)|+ |rs(m′)|. (A.1)

In the proof of Lemma 3.2, we shall use the following simple observation.

Observation A.1. Let s, j, y and m be natural numbers such that j ≤ s/2, y < s/4, j < ys/(4m) and
|rs−j(m)| ≤ y. Then |rs(m)| ≤ 2y.

Proof. If m ≤ s/4, then rs−j(m) = m = rs(m) and the assertion follows. Now suppose that m > s/4.
Clearly there exists an integer t such that m = (s− j)t+ rs−j(m). As |rs−j(m)| ≤ y, y < s/4 < m, and

j < ys/(4m), one has jt = j · m−rs−j(m)

s−j < ys
4m
· m+y
s−ys/(4m)

= y · m+y
4m−y < y. Combined with (A.1) we get

|rs−j(m)− jt| ≤ |rs−j(m)|+ jt < 2y < s/2,

as rs−j(m)| ≤ y < s/4. Since m = st+ rs−j(m)− jt, it follows that |rs(m)| = |rs−j(m)− jt| < 2y. �

Proof of Lemma 3.2. As α > 1, we can write α = t + β, in which t ∈ N and 0 < β ≤ 1. Let
C = C(t) be a sufficiently large integer, and let

b = Cq, x =
⌊
C1+ β

2t b
1−β
t

⌋
.

By the assumption, we obtain

c2 ·
(
b

C

)t+β
≤ N ≤ c1 ·

(
b

C

)t+β
.

Let (at, at−1, . . . , a0) be the greatest, in sense of lexicographical order, sequence of non-negative integers
such that

N = a0 + a1b+ a2b(b− x) + . . .+ atb(b− x) · · · (b− (t− 1)x). (A.2)

It is not difficult to see that a0, a1, . . . , at−1 < b, and

at = (1 + o(1))
N

bt
≤ (1 + o(1))

c1b
β

Ct+β
<
b

x

for sufficiently large constant C.
We will show that the required number k can be found among t + 1 numbers b, b − x, . . . , b − tx.

Suppose to the contrary that for every k ∈ {b, b− x, . . . , b− tx} the remainder of the division of N by
k is at most q. As q = b/C < (b − tx)/2 ≤ k/2, this implies |rk(N)| ≤ q for every such k. Combined
with (A.2), we find

q ≥ |rb−ix(N)| (A.2)
= |rb−ix(a0 + ixa1 + i(i− 1)x2a2 + . . .+ i!xiai)| = rb−ix(Ai)

for every i ∈ {0, 1, . . . , t}, where

Ai := a0 + ixa1 + i(i− 1)x2a2 + . . .+ i!xiai.
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For each i ∈ {0, 1, . . . , t}, we have

ixAi ≤ txAt ≤ (t+ 2)!xt(b+ xat) = O(b2−β),

as x = O(b(1−β)/t) and at < b/x. It follows that ixAi < qb/4. Since q < b/4, ix = o(b), ixAi < qb/4 and
|rb−ix(Ai)| ≤ q, we may apply Observation A.1 to s = b, j = ix, y = q and m = Ai to conclude that

|rb(Ai)| ≤ 2q for each i ∈ {0, 1, . . . , t}.
Since Ai = a0 + ixa1 + i(i− 1)x2a2 + . . .+ i!xiai = i!xiai +

∑i−1
j=0

(
i
j

)
j!xjaj, we get

|rb(i!xiai)|
(A.1)

≤ |rb(Ai)|+
i−1∑
j=0

(
i

j

)
|rb(j!xjaj)|.

As |rb(Ai)| ≤ q, it follows that there exists a constant di depending only on i such that

|rb(i!xiai)| < diq. (A.3)

However, in view of (A.2) and the definition of x, we have

t!xtat = (1 + o(1))t!Ct+β/2b1−β · N
bt
≥ (1 + o(1))t!Ct+β/2 c2b

Ct+β
= (1 + o(1))t!C1−α/2c2q > dtq,

for C sufficiently large. On the other hand,

t!xtat = (1 + o(1))t!Ct+β/2b1−β · N
bt
≤ (1 + o(1))t!Ct+β/2 c1b

Ct+β
= (1 + o(1))t!

c1b

Cβ
<
b

2
,

provided that C is large enough. We infer that rb(t!x
tat) = t!xtat > dtq, which contradicts (A.3). �
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