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Abstract

We investigate adaptive sublinear algorithms for detecting monotone patterns in an array. Given

fixed 2 ≤ k ∈ N and ε > 0, consider the problem of finding a length-k increasing subsequence in an array

f : [n] → R, provided that f is ε-far from free of such subsequences. Recently, it was shown that the

non-adaptive query complexity of the above task is Θ((logn)blog2 kc). In this work, we break the non-

adaptive lower bound, presenting an adaptive algorithm for this problem which makes O(logn) queries.

This is optimal, matching the classical Ω(logn) adaptive lower bound by Fischer [2004] for monotonicity

testing (which corresponds to the case k = 2), and implying in particular that the query complexity of

testing whether the longest increasing subsequence (LIS) has constant length is Θ(logn).
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1 Introduction

For an integer k ∈ N and a function (or sequence) f : [n] → R, a length-k monotone subsequence of f is

a tuple of k indices, (i1, . . . , ik) ∈ [n]k, such that i1 < · · · < ik and f(i1) < · · · < f(ik). More generally,

for a permutation π : [k] → [k], a π-pattern of f is given by a tuple of k indices i1 < · · · < ik such

that f(ij1) < f(ij2) whenever j1, j2 ∈ [k] satisfy π(j1) < π(j2). A sequence f is π-free if there are no

subsequences of f with order pattern π. Pattern avoidance and detection in an array is a central problem

in theoretical computer science and combinatorics, dating back to the work of Knuth [Knu68] (from a

computer science perspective), and Simion and Schmidt [SS85] (from a combinatorics perspective); see also

the survey [Vat15]. Studying the computational problem from a sublinear algorithms perspective, Newman,

Rabinovich, Rajendraprasad, and Sohler [NRRS17] initiated the study of property testing for forbidden order

patterns in a sequence. For a fixed k ∈ N and a pattern π of length k, we want to test whether a function

f : [n] → R is π-free or ε-far from π-free.1 They explicitly considered the monotone case as a particularly

interesting instance; monotone patterns are naturally connected to monotonicity testing and the longest

increasing subsequence and can shine new light on these classic problems. Note that being free of length-k

monotone increasing subsequences is equivalent, as a simple special case of Dilworth’s theorem [Dil50], to

being decomposable into k − 1 monotone non-increasing subsequences. The algorithmic task, which is the

subject of this paper, is the following:

For 2 ≤ k ∈ N and ε > 0, design a randomized algorithm that, given query access to a function

f : [n]→ R, distinguishes with probability at least 9/10 between the case that f is free of length-k

monotone subsequences and the case that it is ε-far from free of length-k monotone subsequences.

This paper gives an algorithm with optimal dependence in n for solving the above problem. We state the

main theorem next, and discuss connections to monotonicity testing and LIS shortly after.

Theorem 1.1. Fix k ∈ N. For any ε > 0, there exists an algorithm that, given query access to a function

f : [n]→ R which is ε-far from (12 . . . k)-free, outputs a length-k monotone subsequence of f with probability

at least 9/10, with query complexity and running time2 of poly(1/ε) · log n.

The algorithm underlying Theorem 1.1 is adaptive3 and solves the testing problem with one-sided error,4

since a length-k monotone subsequence is evidence for not being (12 . . . k)-free. The algorithm improves on a

recent result of Ben-Eliezer, Canonne, Letzter and Waingarten [BECLW19] who gave an algorithm for finding

length-k monotone patterns with query complexity poly(1/ε) · (log n)blog2 kc, which in itself improved upon

a poly(1/ε) · (log n)O(k2) upper bound by Newman et al. [NRRS17]. The focus of [BECLW19] was on non-

adaptive algorithms, and they gave a lower bound of Ω
(
(log n)blog2 kc

)
queries for non-adaptive algorithms

achieving one-sided error. Hence, Theorem 1.1 implies a natural separation between the power of adaptive

and non-adaptive algorithms for finding monotone subsequences.

1A function f is ε-far from π-free if any π-free function g differs on a εn inputs.
2Generally, along the context of the introduction, we allow the poly(1/ε) term to depend on k; the precise bound we obtain

here is
(
(k log(1/ε))k(1/ε)

)O(k) · logn. See Lemma 3.2 for more details.
3An algorithm is non-adaptive if its queries do not depend on the answers to previous queries, or, equivalently, if all queries

to the function can be made in parallel. Otherwise, if the queries of an algorithm may depend on the outputs of previous
queries, then the algorithm is adaptive.

4An algorithm for testing property P has one-sided error if it has perfect completeness, i.e., it always outputs “yes” if f ∈ P;
otherwise, the algorithm is said to have two-sided error.
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Theorem 1.1 is optimal, even among two-sided error algorithms. In the case k = 2, corresponding to

monotonicity testing, there is a Ω(log n/ε) lower bound5 for both non-adaptive and adaptive algorithms

[EKK+00, Fis04, CS14], even with two-sided error. A simple reduction suggested in [NRRS17] shows that

the same lower bound (up to a multiplicative factor depending on k) holds for any fixed k ≥ 2. Thus,

an appealing consequence of Theorem 1.1 is that the natural generalization of monotonicity testing, which

considers forbidden monotone patterns of fixed length longer than 2, does not affect the query complexity

by more than a constant factor. Interestingly, Fischer [Fis04] shows that for any adaptive algorithm for

monotonicity testing on f : [n] → R there is a non-adaptive algorithm at least as good in terms of query

complexity (even if we only restrict ourselves to one-sided error algorithms). That is, adaptivity does not

help at all for k = 2. In contrast, the separation between our O(log n) adaptive upper bound and the

Ω
(
(log n)blog2 kc

)
non-adaptive lower bound of [BECLW19] implies that this is no longer true for k ≥ 4.

As an immediate consequence, Theorem 1.1 gives an optimal testing algorithm for the longest increasing

subsequence (LIS) problem in a certain regime. The classical LIS problem asks one to determine, given

a sequence f : [n] → R, what is the maximum k for which f contains a length-k increasing subsequence.

It is very closely related to other fundamental algorithmic problems in sequences, like the computation of

edit distance, Ulam distance, or distance from monotonicity (for example, the latter equals n minus the

LIS length), and was thoroughly investigated from the perspective of sublinear-time algorithms [PRR06,

ACCL07, SS17, RSSS19] and streaming algorithms [GJKK07, SW07, GG10, SS13, EJ15, NS15]. In the

property testing regime, the corresponding decision task is to distinguish between the case where f has LIS

length at most k (where k is given as part of the input) and the case that f is ε-far from having such a LIS

length. Theorem 1.1 in combination with the aforementioned lower bounds (which readily carry on to this

setting) yield a tight bound on the query complexity of testing whether the LIS length is a constant.

Corollary 1.2. Fix 2 ≤ k ∈ N and ε > 0. The query complexity of testing whether f : [n] → R has LIS

length at most k is Θ(log n).

1.1 Related Work

Considering general permutations π of length k and exact computation, Guillemot and Marx [GM14] showed

how to find a π-pattern in a sequence f in time 2O(k2 log k)n, later improved by Fox [Fox13] to 2O(k2)n. In the

regime k = Ω(log n), an algorithm of Berendsohn, Kozma, and Marx [BKM19] provides the state-of-the-art.

For approximate computation of general patterns π, the works of [NRRS17, BC18] investigate the query

complexity of property testing for forbidden order patterns. When π is of length 2, the problem considered

is equivalent to testing monotonicity, one of the most widely-studied problems in property testing, with

works spanning the past two decades. Over the years, variants of monotonicity testing over various partially

ordered sets have been considered, including the line [n] [EKK+00, Fis04, Bel18, PRV18, Ben19], the Boolean

hypercube {0, 1}d [DGL+99, BBM12, BCGSM12, CS13, CST14, CDST15, KMS15, BB15, CS16, CWX17,

CS19], and the hypergrid [n]d [BRY14, CS14, BCS18]. We refer the reader to [Gol17, Chapter 4] for more on

monotonicity testing, and a general overview of the field of property testing (introduced in [RS96, GGR98]).

Understanding the power of adaptivity seems to be a notoriously difficult problem in property testing. In the

context of testing for forbidden order patterns, non-adaptive algorithms are rather weak: the non-adaptive

5The precise lower bound is of the form Ω(log(εn)/ε), and is equivalent to the aforementioned one as long as, say, ε > n−0.99.
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query complexity is Ω(n1/2) for all non-monotone order patterns [NRRS17], and as high as n1−1/(k−Θ(1)) for

most order patterns of length k [BC18]. Prior to our work (which shows separation between adaptive and

non-adaptive algorithms for monotone patterns), the only case for which adaptive algorithms were known

to outperform their non-adaptive counterparts have been for patterns of length 3 in [NRRS17], and an

intriguing conjecture from the same paper suggests that in fact, the query complexity for testing π-freeness

is polylogarithmic in n for any fixed-length π – depicting an exponential separation from the non-adaptive

case (for non-monotone patterns).

1.2 Main Ideas and Techniques

We now describe the intuition behind the proof of Theorem 1.1. There are two main technical components:

1) a new structural result for functions f : [n] → R with many length-k monotone subsequences which

strengthens a theorem of [BECLW19], and 2) new (adaptive) algorithmic components which lead to the

O(log n)-query algorithm. We start by explaining the (log n)O(k2) upper bound of Newman et al. [NRRS17]

and the structural decomposition of [BECLW19].

Fix k ∈ N and ε > 0, and suppose that f : [n] → R is ε-far from (12 . . . k)-free, that is, ε-far from free of

length-k increasing subsequences. Notice that f must contain a collection C of at least εn/k pairwise-disjoint

increasing subsequences of length k.6 For simplicity, consider k = 2 first (which corresponds to the classical

problem of monotonicity testing). For any x < ` < y ∈ [n], we say that ` cuts the pair (x, y) with slack if

x+ (y − x)/3 ≤ ` ≤ y − (y − x)/3, or, informally, if ` lies roughly “in the middle” of x and y. Additionally,

the width of the pair (x, y) is blog(y − x)c. Define the collection of copies from C of width w around ` by

C`,w = {(x, y) ∈ C : width(x, y) = w, ` cuts (x, y) with slack}.

Finally, the density of copies from C of width w around `, and the total density of C around `, are defined by

τC(`, w) =
1

2w
· |C`,w| ; τC(`) =

logn∑
w=1

τC(`, w).

A polylogarithmic-query algorithm. Fix a location ` ∈ [n] and a width w ∈ [log n], and consider

drawing Θ(1/τC(`, w)) indices from the interval [` − 2w, ` + 2w] uniformly at random, querying f in all of

these locations. Letting m be the median of the set {f(x) : (x, y) ∈ C`,w}, if we manage to query the “1-

entry” x of some (x, y) ∈ C`,w where f(x) ≤ m, and the “2-entry” y′ of some (x′, y′) ∈ C`,w where f(x′) ≥ m,

then (x, y′) would form a valid (12)-pattern, since x < ` < y′ and f(x) ≤ m ≤ f(x′) ≤ f(y′). By definition,

the number of entries x as well as the number of entries y′ within [`− 2w, `+ 2w] which may be sampled is

at least Ω (τC(`, w) · 2w). Therefore, with good probability, Θ(1/τC(`, w)) uniform queries from the interval

will hit at least one such x and one y′, which would form the desired (12)-pattern.

We claim that many values of ` ∈ [n] have some width w ∈ [log n] where the density τC(`, w) is large. First,

a simple double counting argument shows E`∈[n][τC(`)] = Ω(ε). On the other hand, τC(`, w) ≤ O(1) for any

width w ∈ [log n], and so τC(`) = O(log n). Consequently, the probability that a random ` ∈ [n] satisfies

τC(`) = Ω(ε) is Ω(ε/ log n). It suffices to pick Θ(log n/ε) uniformly random ` ∈ [n] in order for one to

6Otherwise, greedily eliminating these subsequences gives a (12 . . . k)-free function differing in strictly less than εn inputs.
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satisfy τC(`) = Ω(ε) with high probability; and, if this event holds, then there exists w ∈ [log n] for which

τC(`, w) = Ω(ε/ log n). We now leverage the querying paradigm described in the previous paragraph: if for

any ` ∈ [n] as above and any w ∈ [log n] we query ≈ log n/ε uniform locations in [` − 2w, ` + 2w], then we

shall find a (12)-pattern with good probability. In total, this procedure makes O(log3 n/ε2) non-adaptive

queries.

To deal with general fixed k ≥ 2 and ε > 0, the (essentially) same reasoning is applied recursively, leading

to the (log n)O(k2)-query algorithm of [NRRS17].

Structural decomposition. [BECLW19] established a structural theorem for functions f : [n]→ R that

are ε-far from (12 . . . k)-free, which led to improved non-adaptive algorithms. Specifically, they show that any

f which is ε-far from (12 . . . k)-free satisfies at least one of two conditions: either f contains many growing

suffixes, or it can be decomposed into splittable intervals. For the purpose of this discussion, let C be any

collection of Θk,ε(n) disjoint (12 . . . k)-copies in f .7

• Growing suffixes: there exist Ωk,ε(n) values of ` ∈ [n] where8 τC(`) ≥ Θk(ε) and τC(`, w) ≤
Θ(τC(`)/k) for every w ∈ [log n]. In other words, many ` ∈ [n] have that the sum of local densit-

ies, τC(`) of (12 . . . k)-patterns in intervals of growing widths is not too small, and furthermore, the

densities are not concentrated on any small set of widths w. Any such ` is said to be the starting point

of a growing suffix.

• Splittable intervals: there exist c ∈ [k− 1] and a collection of pairwise-disjoint intervals I1, . . . , Is ⊂
[n] with

∑s
i=1 |Ii| = Θk,ε(n), so that each Ii contains a dense collection of disjoint (12 . . . k)-patterns of

a particular structure. Specifically, each such interval Ii can be partitioned into three disjoint intervals

Li,Mi, Ri (in this order), each of size Ωk(|Ii|), where Ii fully contains Ωk,ε(|Ii|) disjoint copies of

(12 . . . k)-patterns, in which the first c entries lie in Li, and the last k − c entries lie in Ri (none of

these entries lies in Mi).

[BECLW19] proceeds by devising an Ok,ε(log n)-query non-adaptive algorithm for the growing suffixes case,

and an Ok,ε((log n)blog2 kc)-query non-adaptive algorithm for the splittable intervals case. Thus, in order to

obtain an Ok,ε(log n)-query adaptive algorithm, it suffices to develop such an algorithm under the splittable

intervals assumption.

Robustifying the structural decomposition. The splittable intervals condition, however, does not

seem strong enough for our purposes: in order to utilize it, one would seemingly have to “identify”, in some

way, which parts of our sequence constitute splittable intervals, which is not clear how to do efficiently.

In order to bypass this issue, we substantially strengthen the structural theorem. The stronger statement

asserts that any f : [n] → R that is ε-far from (12 . . . k)-free either satisfies the growing suffixes condition,

defined previously, or a robust version of the splittable intervals condition, defined as follows.

7To simplify the discussion, in the rest of this exposition we will generally not be interested in the exact dependence on the
parameters k and ε, and for convenience we often use notions like Ok,ε(·) and Ωk,ε(·) that hide this dependence.

8We have previously defined the notions of cutting with slack and density only for the case k = 2, but they generalize rather
naturally to any k. First, define the gap index of a (12 . . . k)-pattern in f in locations x1 < . . . < xk ∈ [n] as the smallest integer
c ∈ [k− 1] maximizing xc+1 − xc; the above copy is cut by ` with slack if xi + (xc+1 − xc)/3 ≤ ` ≤ xc+1 − (xc+1 − xc)/3. The
gap-width of the copy is log(xc+1 − xc). The definitions of C`,w, τC(`, w), τC(`) can then be generalized in a straightforward
manner, replacing “width” with “gap width” wherever relevant.
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• Robust splittable intervals: there exist c ∈ [k − 1] and a collection of pairwise-disjoint intervals

I1, . . . , Is ⊂ [n] satisfying the same properties as in the “splittable intervals” setting described above

(with slightly different dependence on ε and k in the Θk,ε(·) term). Additionally, any interval J ⊂ [n]

which contains an interval Ij is itself far from (12 . . . k)-free, i.e. it contains a collection of Ωk,ε(|J |)
disjoint (12 . . . k)-copies.

Towards an algorithm. At a high level, the algorithms of [BECLW19] and [NRRS17] proceed in a

recursive manner where each step tries to find the relevant width considered (which is one of Ω(log n)

options). Since their algorithms are non-adaptive, they consider all Ω(log n) options in recursive steps, and

hence, suffer a logarithmic factor with each step. Since our algorithm is adaptive, we want to choose one

of the widths to recurse on. The algorithm will ensure that the width considered is large enough. When

the width chosen is not too much larger, our recursive step proceeds similarly to [NRRS17]; we call this

the fitting case. However, the width considered may be too large; we call this case overshooting. In order

to deal with the overshooting case, we algorithmically utilize the robust structural theorem in a somewhat

surprising manner in order to detect a (12 . . . k)-copy.

We now expand on the above idea and provide an informal description. As [BECLW19] gives an Ok,ε(log n)-

query algorithm when our function f satisfies the growing suffixes condition, we may assume that f satisfies

the robust splittable intervals condition. Consider sampling, for Ok,ε(1) repetitions, an index x ∈ [n] uni-

formly at random, and for each t ∈ [log n], a random index yt ∈ [x,x + 2t]. Consider the following event:

The index x is a (sufficiently well-behaved)9 first element in some (12 . . . k)-pattern falling in

some robust splittable interval Ij , and for t∗ ∈ [log n] satisfying |Ij | ≤ 2t
∗ ≤ 2|Ij |, yt∗ is a

(well-behaved) (c+ 1)-th element in some (12 . . . k)-pattern falling in Ij .

We claim that the above event occurs with high (constant) probability for at least one choice of x, and

that when this event does occur, the algorithm can be recursively applied without incurring a multiplicative

logarithmic factor. Indeed, suppose that the above holds for some x.10 We set y to be yt, where t is the

largest such that f(x) < f(yt) holds, and notice in particular that t ≥ t∗. This means that x < y and

f(x) < f(y).

The fitting case occurs when t (achieving the maximum above) is roughly the same as t∗. To handle this

case, we recurse by finding a (12 . . . c)-patterns in Lj , and (12 . . . (k − c))-pattern in Rj . At a high level, if

one takes Θk,ε(1) independent uniform samples z from [x,y], then one of them is likely to fall in the middle

part Mj of Ij , so that Lj ⊂ [x − 2t, z] and Rj ⊂ [z,y + 2t], allowing us to proceed recursively. While

this description omits a few details, the intuition proceeds similarly to [NRRS17], except that the recursion

occurs only on one width, namely, t, and does not lose multiplicative logarithmic factors as in the previous

approaches.

9Recall that, in the first polylogarithmic-query qlgorithm described above, we hoped to hit a “1-entry” x whose value f(x) is
no higher than some suitable median value; the “well-behaved” requirements are of similar flavor, and do not incur more than
a constant overhead on the query complexity.

10More precisely, our algorithm runs this procedure for any of our choices of x, without “knowing” which of them satisfies
the above event. Since the total number of choices is Ok,ε(1), this incurs only a constant overhead.
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The overshooting component. The other case, of overshooting, occurs when t is significantly larger than

t∗. We expand on the main ideas here in more detail; the strong guarantee given by the robust splittable

intervals condition adds a “for all” element into the structural characterization, which is able to treat the

problem posed by overshooting in a rather surprising and non-standard way. Since t is much larger than

log |Ij |, there exist k − 2 intervals J1, . . . , Jk−2 ⊂ [x,y] satisfying the following conditions:

• J1 lies immediately after the interval Ij (recall that Ij is the interval containing x).

• Ji+1 lies immediately after Ji, for any i ∈ [k − 3].

• |J1| = d|Ij | · αk,εe and |Ji+1| = d|Ji| · αk,εe for any i ∈ [k − 3], for some large enough αk,ε > 1.

For any i ∈ [k−2], set J ′i to be the minimal interval containing both Ij and Ji. The robust splittable intervals

condition asserts that (since each J ′i contains the splittable interval Ij) the number of disjoint (12 . . . k)-copies

in J ′i is proportional to |J ′i |, and provided that αk,ε is large enough, this means that Ji = J ′i \ J ′i−1 also

contains a collection Ti of Ωk,ε(|Ji|) disjoint (12 . . . k)-copies. We now define two sets Ai and Bi as follows.

Let Ai be the collection of prefixes (a1, . . . , ai+1) of k-tuples from Ti with f(ai+1) < f(y), and let Bi be the

collection of suffixes (ai+1, . . . , ak) of k-tuples from Ti with f(ai+1) ≥ f(y). As |Ti| = |Ai|+ |Bi|, one of Ai
and Bi is large (i.e. has size at least Ωk,ε(|Ji|)).

This seemingly innocent combinatorial idea can be exploited non-trivially to find a (12 . . . k)-copy. Spe-

cifically, the algorithm to handle overshooting aims to find (recursively) shorter increasing subsequences in

J1, . . . , Jk−2, with the hope of combining them together into a (12 . . . k)-copy. Concretely, for any i ∈ [k−2],

we make two recursive calls of our algorithm on Ji: one for a (k − i)-increasing subsequence in Ji whose

values are at least f(y),11 and a second for an (i+ 1)-increasing subsequence in Ji, with values smaller than

f(y). By induction, the first recursive call succeeds with good probability if |Ai| is large, while the second

call succeeds with good probability if |Bi| is large. Since for any i either |Ai| or |Bi| must be large, at least

one of the following must hold.

• B1 is large. In this case we are likely to find a length-(k − 1) monotone pattern in J1 with values at

least f(y) > f(x), which combines with x to form a length-k monotone pattern.

• Ak−2 is large. Here we are likely to find a length-(k − 1) monotone pattern in Jk−2 whose values lie

below f(y), which combines with y to form a length-k monotone pattern.

• There exists i ∈ [k − 3] where both Ai and Bi+1 are large. Here we will find, with good probability, a

length-(i+1) monotone pattern in Ji with values below f(y), and a length-(k−i−1) monotone pattern

in Ji+1 with values above f(y); together these two patterns combine to form a (12 . . . k)-pattern.

In all cases, a k-increasing subsequence is found with good probability.

Finally, for the query complexity, our algorithm (which runs both the “fitting” component and the “over-

shooting” component, to address both cases) makes Ok,ε(log n) queries: each call makes Ok,ε(log n) queries

in itself and Ok,ε(1) additional calls recursively, where the recursion depth is bounded by k. It follows that

the total query complexity is of the form Ok,ε(log n).

11Technically speaking, our algorithm can be configured to only look for increasing subsequences whose values lie in some
range; we use this to make sure that shorter increasing subsequences obtained from the recursive calls of the algorithm can
eventually be concatenated into a valid length-k one.
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1.3 Notation

All logarithms considered are base 2. We consider functions f : I → R, where I ⊆ [n], as the inputs and

main objects of study. An interval in [n] is a set I ⊆ [n] of the form I = {a, a + 1, . . . , b}. At many

places throughout the paper, we think of augmenting the image with a special character ∗ to consider

f : I → R ∪ {∗}. ∗ can be thought of as a masking operation: In many cases, we will only be interested

in entries x of f so that f(x) lies in some prescribed (known in advance) range of values R ⊆ R, so that

entries outside this range will be marked by ∗. Whenever the algorithm queries f(x) and observes ∗, it

will interpret this as an incomparable value (with respect to ordering) in R. As a result, ∗-values will

never be part of monotone subsequences. We note that augmenting the image with ∗ was unnecessary

in [NRRS17, BECLW19] because they only considered non-adaptive algorithms. We say that for a fixed

f : I → R∪{∗}, the set T is a collection of disjoint monotone subsequences of length k if it consists of tuples

(i1, . . . , ik) ∈ Ik, where i1 < · · · < ik and f(i1) < · · · < f(ik), and furthermore, for any two tuples (i1, . . . , ik)

and (i′1, . . . , i
′
k), their intersection (as sets) is empty. We also denote E(T ) as the union of indices in k-tuples

of T , i.e., E(T ) = ∪(i1,...,ik)∈T {i1, . . . , ik}. Finally, we let poly(·) denote a large enough polynomial whose

degree is (bounded by) a universal constant.

2 Stronger structural dichotomy

In this section, we establish the structural foundations – specifically, the growing suffixes versus robust

splittable intervals dichotomy – lying at the heart of our adaptive algorithm. We start with the definitions.

The first is the definition of a growing suffix setting, as given in [BECLW19]. For what follows, for an index

` ∈ [n] define η` = dlog2(n−`)e, and for any t ∈ [η`] set St(`) = [a+2t−1, a+2t)∩ [n]. Note that the intervals

S1, . . . , Sη` are a partition of (`, n] into intervals of exponentially increasing length (except for maybe the

last one). Finally, the tuple S(`) = (St(`))t∈[η`] is called the growing suffix starting at `.

Definition 2.1 (Growing suffixes (see [BECLW19], Definition 2.4)). Let α, β ∈ [0, 1]. We say that an index

` ∈ [n] starts an (α, β)-growing suffix if, when considering the collection of intervals S(`) = {St(`) : t ∈ [η`]},
for each t ∈ [η`] there is a subset Dt(`) ⊆ St(`) of indices such that the following properties hold.

1. We have |Dt(`)|/|St(`)| ≤ α for all t ∈ [η`], and
∑η`
t=1 |Dt(`)|/|St(`)| ≥ β.

2. For every t, t′ ∈ [ηa] where t < t′, if a ∈ Dt(`) and a′ ∈ Dt′(`), then f(a) < f(a′).

The second definition, also from [BECLW19], describes the (non-robust) splittable intervals setting.

Definition 2.2 (Splittable intervals (see [BECLW19], Definition 2.5)). Let α, β ∈ (0, 1] and c ∈ [k− 1]. Let

I ⊆ [n] be an interval, let T ⊆ Ik be a set of disjoint, length-k monotone subsequences of f lying in I, and

define

T (L) = {(i1, . . . , ic) ∈ Ic : (i1, . . . , ic) is a prefix of a k-tuple in T}, and

T (R) = {(j1, . . . , jk−c) ∈ Ik−c : (j1, . . . , jk−c) is a suffix of a k-tuple in T}.
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We say that the pair (I, T ) is (c, α, β)-splittable if |T |/|I| ≥ β; f(ic) < f(j1) for every (i1, . . . , ic) ∈ T (L)

and (j1, . . . , jk−c) ∈ T (R); and there is a partition of I into three adjacent intervals L,M,R ⊆ I (that appear

in this order, from left to right) of size at least α|I|, satisfying T (L) ⊆ Lc and T (R) ⊆ Rk−c.

A collection of disjoint interval-tuple pairs (I1, T1), . . . , (Is, Ts) is called a (c, α, β)-splittable collection of T

if each (Ij , Tj) is (c, α, β)-splittable and the sets (Tj : j ∈ [s]) partition T .

The following theorem presents the growing suffixes versus (non-robust) splittable intervals dichotomy, which

is among the main structural results of [BECLW19].12

Theorem 2.3 ([BECLW19]). Let k, n ∈ N, ε ∈ (0, 1), and C > 0, and let I ⊆ [n] be an interval. Let

f : I → R ∪ {∗} be a function and let T 0 ⊆ Ik be a set of at least ε|I| disjoint monotone subsequences of f

of length k. Then there exist α ∈ (0, 1) and p > 0 satisfying α ≥ Ω(ε/k5) and p ≤ poly(k log(1/ε)) such that

at least one of the following conditions holds.

1. Growing suffixes: There exists a set H ⊆ [n], of indices that start an (α,Ckα)-growing suffix,

satisfying α|H| ≥ (ε/p)n.

2. Splittable intervals (non-robust): There exist an integer c with 1 ≤ c < k, a set T , with

E(T ) ⊆ E(T 0), of disjoint length-k monotone subsequences, and a (c, 1/(6k), α)-splittable collection of

T , consisting of disjoint interval-tuple pairs (I1, T1), . . . , (Is, Ts), such that

α

s∑
h=1

|Ih| ≥ |T 0|/p. (1)

As argued in Section 1.2, the splittable intervals condition does not seem strong enough by itself to be useful

for adaptive algorithms. Therefore, we next aim to establish a stronger structural dichotomy, asserting that

f either satisfies the growing suffixes condition, or a robust version of the splittable intervals condition. The

next lemma will imply that the growing suffixes condition can be robustified by merely throwing away a

subset of “bad” splittable intervals.

Lemma 2.4. Let α ∈ (0, 1) and let I ⊂ N be an interval. Suppose that I1, . . . , Is ⊂ I are disjoint intervals

such that
∑s
h=1 |Ih| ≥ α|I|. Then there exists a set G ⊂ [s] such that∑

h∈G

|Ih| ≥ (α/4)|I|,

and for every interval J ⊂ I that contains an interval Ih with h ∈ G,∑
h∈[s] : Ih⊂J

|Ih| ≥ (α/4)|J |.

Proof. Let B ⊆ [s] be the set of indices h for which there is an interval Jh ⊇ Ih satisfying
∑
h∈[s]:Ih⊆J |Ih| <

(α/4)|J |. For each h ∈ B fix such a containing interval J(Ih).

Let J be a minimal subset of {J(Ih) : h ∈ B} with the following property: for any h ∈ B there exists J ∈ J
containing Ih. Such a minimal subset clearly exists, since {J(Ih) : h ∈ B} itself satisfies this property (but

12In [BECLW19], the theorem is stated with respect to two parameters, k, k0. For our purpose it suffices to set k0 = k.
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is not necessarily minimal). The next claim asserts that no vertex is covered more than three times by sets

in J .

Claim 2.5. Every element x ∈ I is contained in at most three intervals from J .

Proof. The proof follows from the minimality of J . Consider first the case where x ∈ Ih∗ for some h∗ ∈ B.

Let JL = [aL, bL] be an interval from J that contains x, and whose left-most element aL is furthest to the

left among all intervals from J that contain x; pick JR = [aR, bR] symmetrically, with bR being furthest

possible to the right; and let JM = [aM , bM ] be an interval from J that contains Ih. We claim that J
does not have any other intervals that contain x. Suppose, to the contrary, that there exists J = [a, b] ∈ J
containing x where J 6= JL, JR, JM ; note that by definition of JL and JM , aL ≤ a and bR ≥ b.

We claim that J \ {J} covers all intervals Ih with h ∈ [B]; it suffices to show that for any h ∈ B such that

Ih ⊂ J , one of the intervals JL, JR, JM covers Ih. Consider h ∈ B such that Ih ⊂ J , and write Ih = [c, d]. If

h = h∗, then Ih ⊂ JM . If Ih lies to the left of Ih∗ , then d < x ≤ bL, and c ≥ a ≥ aL, so Ih ⊆ JL. Similarly,

if Ih lies to the right of Ih, then Ih ⊆ JR. It follows that, indeed, intervals from J \ {J} cover all intervals

in {Ih : h ∈ B}, contradicting the minimality of J .

Now, if x is not contained in any interval of Ih with h ∈ B, then we can show similarly that there are at

most two intervals from J that contain x, by defining JL and JR as above.

Let U be the union of intervals from J . In light of the above claim,

∑
h∈B

|Ih| ≤
∑
J∈J

 ∑
h∈[s]: Ih⊆J

|Ih|

 <
α

4
·
∑
J∈J
|J | ≤ 3α

4
· |U | ≤ 3α

4
· |I|,

where the first inequality holds because each Ih with h ∈ B is covered by an interval in J ; the second

inequality follows as J consists of sets J(Ih) with h ∈ B; the third inequality follows from the claim; and

the last one holds because U ⊂ I. Finally, let G = [s]\ [B]. By assumption on
∑
h |Ih| and the previous line,

∑
h∈G

|Ih| =
∑
h∈[s]

|Ih| −
∑
h∈B

|Ih| ≥ α|I| −
3α

4
· |I| = α

4
· |I|,

and every interval J that contains an interval Ih with h ∈ G satisfies
∑
h∈[s] : Ih⊂J |Ih| ≥ (α/4)|J |, as

required.

The robust version of the structural dichotomy is stated below; the proof follows easily from the basic

structural dichotomy in combination with the last lemma.

Theorem 2.6 (Robust structural theorem). Let k, n ∈ N, ε ∈ (0, 1), and C > 0, and let I ⊆ [n] be an

interval. Let f : I → R∪{∗} be an array and let T 0 ⊆ Ik be a set of at least ε|I| disjoint length-k monotone

subsequences of f . Then there exist α ∈ (0, 1) and p > 0 with α ≥ Ω(ε/k5) and p ≤ poly(k log(1/ε)) such

that at least one of the following holds.

1. Growing suffixes: There exists a set H ⊆ [n], of indices that start an (α,Ckα)-growing suffix,

satisfying α|H| ≥ (ε/p)n.
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2. Robust splittable intervals: There exist an integer c with 1 ≤ c < k, a set T , with E(T ) ⊆ E(T 0),

of disjoint length-k monotone subsequences, and a (c, 1/(6k), α)-splittable collection of T , consisting of

disjoint interval-tuple pairs (I1, T1), . . . , (Is, Ts), such that

α

s∑
h=1

|Ih| ≥ (ε/p)|I|, (2)

Moreover, if J ⊂ I is an interval where J ⊃ Ih for some h ∈ [s], J contains at least (ε/p)|J | disjoint

(12 . . . k)-patterns from T 0.

Proof. Apply Theorem 2.3. Let α∗ ∈ (0, 1) and p∗ be parameters such that α∗ ≥ Ω(ε/k5) and p∗ ≤
poly(k log(1/ε)), as guaranteed by the theorem. Set α = α∗ and p = 4p∗. If Condition 1 holds in the

application of Theorem 2.3, then the analogous growing suffix condition in Theorem 2.6 clearly holds. So

suppose that Condition 2 in Theorem 2.3 holds, and let c and (I1, T1), . . . , (Is, Ts) be as guaranteed there.

In particular, we have
∑s
h=1 |Ih| ≥ (1/p∗α∗)|T 0|. By Lemma 2.4, there is a subset G ⊂ [s] such that∑

h∈G |Ih| ≥ (1/4p∗α∗)|T 0| ≥ (ε/4p∗α∗)|I| = (ε/pα)|I|; and, for every interval J in I that contains an

interval Ih with h ∈ [G],
∑
h∈[s] : Ih⊂J |Ih| ≥ (ε/4p∗α∗)|J |. Since each Ih contains at least α∗|Ih| disjoint

length-k increasing subsequences, it follows that J contains at least (ε/4p∗)|J | = (ε/p)|J | length-k increasing

subsequences. Taking T to be the union of Th over h ∈ G, along with the pairs (Ih, Th) with h ∈ G, we

obtain the required robust splittable intervals.

3 The Algorithm

Our aim in this section is to prove the existence of a randomized algorithm, Find-Monotonek(f, ε, δ), that

receives as input a function f : I → R ∪ {∗} (where I ⊂ N is an interval), and parameters ε, δ ∈ (0, 1),

and satisfies the following: if f contains ε|I| disjoint (12 . . . k)-patterns, then the algorithm outputs such a

pattern with probability at least 1 − δ; and the running time of the algorithm is Ok,ε(log n). To this end,

we describe such an algorithm in Figure 3 below. This algorithm uses three subroutines: Sample-Suffix,

Find-Within-Interval, and Find-Good-Split, the first of which is given in [BECLW19], and the latter

two are described below, in Figures 1 and 2. The majority of the section is devoted to the proof that

Find-Monotone indeed outputs a (12 . . . k)-pattern with high probability as claimed. Specifically, we shall

prove the following theorem.

Theorem 3.1. Let k ∈ N. The randomized algorithm Find-Monotonek(f, ε, δ), described in Figure 3,

satisfies the following. Given a function f : I → R ∪ {∗} and parameters ε, δ ∈ (0, 1), if f contains ε|I|
disjoint (12 . . . k)-patterns, then Find-Monotonek(f, ε, δ) outputs a (12 . . . k)-pattern of f with probability at

least 1− δ.

Our proof proceeds by induction on k. It relies on Lemmas 3.3, 3.4, 3.5, the proofs of the latter two of which

assume that Theorem 3.1 holds for smaller k. We first state and prove these lemmas, and then we prove

Theorem 3.1.

To complete the picture, we need to upper-bound the query complexity and running time of Find-Monotone.

We do this in the following lemma, whose proof we delay to the end of the section.
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Lemma 3.2. Let f : I → R ∪ {∗}, where I is an interval of length at most n. The query complexity and

running time of Find-Monotonek(f, ε, δ) are at most

(
kk · (log(1/ε))k

1

ε
· log(1/δ)

)O(k)

· log n.

3.1 The Sample-Suffix Sub-Routine

We re-state Lemma 3.1 from [BECLW19] which gives the Sample-Suffixk subroutine, with a few adaptations

to fit our needs.

Lemma 3.3 ([BECLW19]). Consider any fixed value of k ∈ N, and let C > 0 be a large enough constant.

There exists a non-adaptive and randomized algorithm, Sample-Suffixk(f, ε, δ) which takes three inputs:

query access to a function f : I → R∪{∗}, where I ⊂ [n] is an interval, a parameter ε ∈ (0, 1), and an error

probability bound δ ∈ (0, 1). Suppose there exists α ∈ (0, 1), and a set H ⊆ I of (α,Ckα)-growing suffixes

of f satisfying α|H| ≥ ε|I|. Then, Sample-Suffixk(f, ε, δ) finds a length-k monotone subsequence of f with

probability at least 1− δ. The query complexity of Sample-Suffixk(f, ε, δ) is at most

log n

ε
· polylog(1/ε) · log(1/δ).

The few adaptations that Lemma 3.3 has in comparison to Lemma 3.1 from [BECLW19] are with respect to

the error probability going from 9/10 to 1− δ, and the fact that we are considering functions f : I → R∪{∗}
as opposed to f : [n]→ R.

In order to achieve error probability 1−δ in Lemma 3.1 of [BECLW19], we perform O(log(1/δ)) independent

repetitions of Sample-Suffixk, as described in [BECLW19]. These are reflected in the query complexity.

The second difference is that we consider functions f : I → R ∪ {∗}. Inspecting the proof of Lemma 3.1

in [BECLW19], one can see that Sample-Suffixk is guaranteed to output, with high probability, (12 . . . k)-

patterns whose indices are specified in Definition 2.1. Since the algorithm is non-adaptive, enforcing that

indices not partaking in growing suffices not be used (by making them ∗) does not affect that analysis.

3.2 Handling Overshooting: The Find-Within-Interval Sub-Routine

In this section, we describe the Find-Within-Interval subroutine, addressing the overshooting case as

explained in Section 1.2.

Lemma 3.4. Consider the randomized algorithm, Find-Within-Intervalk(f, ε, δ, x, y,J ), described in Fig-

ure 1, which takes six inputs:

• Query access to a function f : I → R ∪ {∗},

• Two parameters ε, δ ∈ (0, 1),

• Two points x, y ∈ I where x < y and f(x) < f(y), and

11



Subroutine Find-Within-Intervalk(f, ε, δ, x, y,J ).

Input: Query access to a function f : I → R∪{∗}, parameters ε, δ ∈ (0, 1), two inputs x, y ∈ I where
x < y and f(x) < f(y), and J = (J1, . . . , Jk−2) which is a collection of disjoint intervals appearing in
order inside [x, y].

Output: a sequence i1 < . . . < ik with f(i1) < . . . < f(ik), or fail.

1. For every κ ∈ [k − 2], let fκ, f
′
κ : Jκ → R ∪ {∗} be given by:

fκ(i) =

{
f(i) f(i) < f(y)
∗ o.w.

and f ′κ(i) =

{
f(i) f(i) ≥ f(y)
∗ o.w.

. (3)

2. Call Find-Monotoneκ+1(fκ, ε/2, δ/(2k)) for every κ ∈ [k − 2].

3. Call Find-Monotonek−κ(f ′κ, ε/2, δ/(2k)) for every κ ∈ [k − 2].

4. Consider the set of all indices that are output in Lines 2 and 3, together with x and y. If there
is a length-k increasing subsequence among these indices, output it. Otherwise, output fail.

Figure 1: Description of the Find-Within-Interval subroutine.

• A collection J = (J1, . . . , Jk−2) of k− 2 disjoint intervals which appear in order (i.e., Jκ comes before

Jκ+1) within the interval [x, y],

and outputs either a length-k increasing subsequence of f , or fail.

Suppose that for every κ ∈ [k−2], the function f |Jκ : Jκ → R∪{∗}, contains ε|Jκ| disjoint (12 . . . k)-patterns.

Then, assuming that Theorem 3.1 holds for every k′ with 1 ≤ k′ < k, Find-Within-Intervalk(f, ε, δ, x, y,J )

outputs a length-k monotone subsequence of f with probability at least 1− δ.

Proof. For each κ ∈ [k− 2], let Cκ be a collection of at least ε|Jκ| disjoint (12 . . . k)-patterns in Jκ. We form

the following two collections, of suffixes and prefixes of (12 . . . k)-patterns in Cκ.

Aκ = {(i1, . . . , iκ+1) : (i1, . . . , iκ+1) is a prefix of a k-tuple from Ck, and f(iκ+1) < f(y)}

Bκ = {(iκ+1, . . . , ik) : (iκ+1, . . . , ik) is a suffix of a k-tuple from Ck, and f(iκ+1) ≥ f(y)}

Note that for each (12 . . . k)-pattern in Cκ, either its (κ + 1)-prefix is in Aκ, or its (k − κ)-suffix is in Bκ.

Thus, at least one of Aκ and Bκ has size at least (ε/2)|Jκ. Say that Jκ is of type-1 if |Aκ| ≥ (ε/2)|Jκ|, and

otherwise say that Jκ is of type-2 (in which case |Bκ| ≥ (ε/2)|Jκ|).

Now, if Jκ is of type-1, then Line 2, called with κ, will find a (12 . . . (κ+ 1))-pattern with probability at least

1− δ/(2k), by Theorem 3.1 for κ+ 1 < k (namely, the inductive hypothesis) and the lower bound on |Aκ|.
On the other hand, if Jκ is of type-2, Line 3 will output a (12 . . . (k − κ))-pattern with probability at least

1 − δ/(2k), due to the inductive hypothesis and the lower bound on |Bκ|. Thus, by a union bound, with

probability at least 1− δ, Line 2 outputs a pattern whenever Jκ is of type-1, and Line 3 outputs a pattern

whenever Jκ is of type-2.
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Notice that if J1 is of type-2, the (12 . . . (k − 1))-pattern returned in Line 3 can be combined with x to

form a (12 . . . k)-pattern. Hence, we may assume that J1 is of type-1. Furthermore, if Jk−2 is of type-1, the

(12 . . . (k − 1))-pattern found in Line 2 can be combined with y to form a (12 . . . k)-pattern, and hence, we

may assume that Jk−2 is of type-2. Thus, there exists some κ ∈ [k − 3] where Jκ is of type-1 and Jκ+1 is

of type-2. Since Jκ comes before Jκ+1, and since non-starred elements in fκ lie below the non-∗ elements of

f ′k+1, we can combine the (12 . . . (κ+ 1))-pattern in fκ with the (12 . . . (k − κ− 1))-pattern in f ′κ+1.

3.3 Handling the Fitting Case: The Find-Good-Split Sub-Routine

In this section, we describe the Find-Good-Split subroutine, which corresponds to the fitting case from

Section 1.2.

Subroutine Find-Good-Splitk(f, ε, δ, c, ξ).

Input: Query access to a function f : I → R ∪ {∗}, parameters ε, δ ∈ (0, 1), and c ∈ [k − 1]. We let
c1 > 1 be a large enough (absolute) constant.

Output: a sequence i1 < . . . < ik with f(i1) < . . . < f(ik), or fail.

1. Repeat the following procedure t = c1k/(εξ
2) · log(1/δ) times:

(a) Sample w, z ∼ I, and consider the functions fz,w : I ∩ (−∞, z) → R ∪ {∗} and f ′z,w : I ∩
[z,∞)→ R ∪ {∗} given by

fz,w(i) =

{
f(i) f(i) < f(w)
∗ o.w.

and f ′z,w(i) =

{
f(i) f(i) ≥ f(w)
∗ o.w.

. (4)

(b) Run Find-Monotonec(fz,w, εξ/3, δ/3) and Find-Monotonek−c(f
′
z,w, εξ/3, δ/3).

2. If we ever find a length-k monotone subsequence of f , output it, otherwise, output fail.

Figure 2: Description of the Find-Good-Split subroutine.

Lemma 3.5. Consider the randomized algorithm Find-Good-Splitk(f, ε, δ, c, ξ), described in Figure 2,

which takes as input five parameters:

• Query access to a function f : I → R ∪ {∗},

• Two parameters ε, δ ∈ (0, 1),

• An integer c ∈ [k − 1], and

• A parameter ξ ∈ (0, 1],

and outputs either a length-k increasing subsequence or fail.

Suppose that there exists an interval-tuple pair (I ′, T ) which is (c, 1/(6k), ε)-splittable and |I ′|/|I| ≥ ξ. Then,

the algorithms Find-Good-Splitk(f, ε, δ, c, ξ) finds a (12 . . . k)-pattern of f with probability 1− δ.
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Proof. Let (I ′, T ) be (c, 1/(6k), ε)-splittable, and let L,M,R be the contiguous intervals splitting I ′ as in

Definition 2.2. Furthermore, let T (L) and T (R) be as in Definition 2.2. Writing

m1 = rank
({
f(ic) : (i1, . . . , ic) ∈ T (L)

}
, |T |/3

)
,

m2 = rank
({
f(ic) : (i1, . . . , ic) ∈ T (L)

}
, 2|T |/3

)
,

as the (|T |/3)-largest and (2|T |/3)-largest elements in
{
f(ic) : (i1, . . . , ic) ∈ T (L)

}
(taking multiplicity into

account). Let T
(L)
l be the (12 . . . c)-patterns in T (L) where the c-th index is at most m1, and T

(R)
h be the

(k − c)-patterns in T (R) whose (c + 1)-th index is larger than m2. Notice that |T (L)
l |, |T

(R)
h | ≥ |T |/3, and

that any (12 . . . c)-pattern from T
(L)
l can be combined with any (12 . . . (k − c))-pattern from T

(R)
h to form a

(12 . . . k)-pattern. Furthermore, there exists |T |/3 indices in I ′ whose function value lies in [m1,m2].

Consider the event, defined over the randomness of w, z ∼ I that: z ∈M ; and w satisfies f(w) ∈ [m1,m2].

This event occurs at some iteration of Line 1, with probability at least 1 − δ/3; this is because there are

|M | ≥ |I ′|/(6k) ≥ (ξ/(6k))|I| valid indices for z, and there are at least |T |/3 ≥ (ε/3)|I ′| ≥ (εξ/3)|I| indices

for w, so the probability that the pair (z,w) satisfies the requirements is at least εξ2/(18k). We obtain the

desired bound by the setting of t, since c1 is set to a large enough constant.

Notice that when this event occurs, the (12 . . . c)-patterns in T
(L)
l all lie in fz,w, and the (12 . . . (k − c))-

patterns in T
(R)
h all lie in f ′z,w. Thus, fz,w contains at least |T |/3 ≥ (ε/3)|I ′| ≥ (εξ/3)|I| disjoint (12 . . . c)-

patterns, and f ′z,w similarly contains at least (εξ/3)|I| disjoint (12 . . . (k−c))-patterns. Thus, by the inductive

hypothesis, Line 1b finds a (12 . . . c)-pattern in fz,w and a (12 . . . (k − c))-pattern in f ′z,w with probability

at least 1− 2δ/3, and these can be combined to give a (12 . . . k)-pattern of f .

3.4 The Main Algorithm

Consider the description of the main algorithm in Figure 3. We prove Theorem 3.1 by induction on k. The

proof uses Lemma 3.3, Lemma 3.4, and Lemma 3.5.

Proof of Theorem 3.1.

Base Case: k = 1.

Recall that f has at least ε|I| non-∗ values. Thus, with probability at least 1− δ, a non-∗ value is observed

after sampling x ∼ I at least (1/ε) · log(1/δ) times. It follows that with probability at least 1 − δ, Line 2a

of our main algorithm, given in Figure 3, samples x 6= ∗ in one of its iterations.

Inductive Step: proof of Theorem 3.1 for k ≥ 2, under the assumption that it holds for every k′ with

1 ≤ k′ < k.

Let p = P (k log(1/ε)) (recall that P (·) is a polynomial of sufficiently large (constant) degree). Apply

Theorem 2.6 to f .

Suppose, first, that (1) of Theorem 2.6 holds. So, there exists a set H ⊂ [n] of indices that start an (α,Ckα)-

growing suffix, with α|H| ≥ (ε/p)n, for some α ∈ (0, 1). By Lemma 3.3, the call for Sample-Suffixk(f, ε/p, δ)

in Line 1 outputs a length-k monotone subsequence of f with probability at least 1− δ.
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Subroutine Find-Monotonek(f, ε, δ).

Input: Query access to a function f : I → R ∪ {∗}, parameters ε, δ ∈ (0, 1). We let c1, c2, c3 > 0 be
large enough constants, and let p = P (k log(1/ε)), where P : R → R is a polynomial of large enough
(constant) degree.

Output: a sequence i1 < . . . < ik with f(i1) < . . . < f(ik), or fail.

1. Run Sample-Suffixk(f, ε/p, δ).

2. Repeat the following for c1 log(1/δ) · p · k5/ε2 many iterations:

(a) Sample x ∼ I uniformly at random. If f(x) = ∗, proceed to the next iteration. Otherwise,
if k = 1 output x and proceed to Step 3, and if k ≥ 2 proceed to the next step.

(b) For each t ∈ [log n], sample yt ∼ [x+ 2t/(12k),x+ 2t] uniformly at random. If there exists
at least one t where f(yt) > f(x), set

y = max {yt : t ∈ [log n] and f(yt) > f(x)} , (5)

let t∗ ∈ [log n] be the index for which yt∗ = y, and continue to the next line. Otherwise,
i.e. if f(yt) 6> f(x) for every t, continue to the next iteration.

(c) If k = 2, output (x,y) and proceed to Step 3. If k > 2, continue to the next line.

(d) Here k ≥ 3. Set ` = 4p/ε and perform the following.

i. Consider the collection J of k − 2 intervals J1, . . . , Jk−2 appearing in order within
[x,y], given by setting, for every i ∈ [k − 2],

Ji =

[
x +

2t
∗

12k
· `−(k−1−i),x +

2t
∗

12k
· `−(k−2−i)

)
, (6)

and run Find-Within-Intervalk(f, ε/2p, δ/2,x,y,J ).

ii. For each t′ ∈ [t∗ − 3k log `, t∗] do the following.

Consider the interval Jt′ = [x − 2t
′
,x + 2t

′
], and the restricted function

gt′ : Jt′ → R ∪ {∗} given by gt′ = f |Jt′ . For every c0 ∈ [k − 1], run
Find-Good-Splitk(gt′ , ε/c2, δ/2, c0, 1/4).

3. If a length-k monotone subsequence of f is found, output it. Otherwise, output fail.

Figure 3: Description of the Find-Monotonek subroutine.

Now suppose that (2) of Theorem 2.6 holds, and let (I1, T1), . . . , (Is, Ts) be a (c, 1/(6k), α)-splittable collection

for some α ≥ Ω(ε/k5) and c ∈ [k − 1], satisfying (2) and, moreover, that any J ⊂ I with J ⊃ Ih for some

h ∈ [s] contains (ε/p)|J | disjoint (12 . . . k)-patterns. Let Event be the event that, for a particular iteration

of Lines 2a and 2b, x is the 1-entry of some k-tuple from Th, for some h ∈ [s], and yt is the (c+ 1)-entry of

some (possibly other) k-tuple in Th, where t is such that |Ih| ≤ 2t < 2|Ih|.

Claim 3.6. Pr[Event] ≥ εα/(2p).
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Proof. For each h ∈ [s], let Ah and Bh be the collections of 1- and (c+ 1)-entries of patterns in Th. Then

s∑
h=1

|Ah| =
s∑

h=1

|Th| ≥ α
s∑

h=1

|Ih| ≥
ε

p
· |I|.

The first inequality follows from the assumption that (Ih, Th) is (c, 1/(6k), α)-splittable, and the second

inequality follows from the assumption that (2) holds.

As a result, the probability over the draw of x ∼ I in Line 2a that x ∈ Ah is at least ε/p. Fix such an x, and

consider t ∈ [log n] for which |Ih| ≤ 2t < 2|Ih|. Notice that Bh ⊂ [x+2t/(12k),x+2t] since 2t−1 ≤ |Ih| < 2t,

and that the distance between any index of Ah and Bh is at least |Ih|/(6k) ≥ 2t/(12k) since (Ih, Th) is

(c, 1/(6k), α)-splittable. Therefore, the probability over the draw of yt ∼ [x+ 2t/(12k),x+ 2t] that yt ∈ Bh
is at least |Bh|/2t ≥ |Th|/(2|Ih|) ≥ α/2.

By the previous claim, since we have c1 · log(1/δ) · p · k5/ε2 iterations of Lines 2a and 2b, with probability

at least 1− δ/2, Event holds in some iteration (using the lower bound α ≥ Ω(ε/k5) and the choice of c1 as

a large constant).

Consider the first execution of Line 2a and Line 2b where Event holds (assuming such an execution exists).

Let h ∈ [s] and t ∈ [log n] be the corresponding parameters, i.e., h and t are set so x is the first index of a

k-tuple in Th, yt is the (c + 1)-th index in another k-tuple in Th, and |Ih| ≤ 2t < 2|Ih|. We consider this

iteration of Line 2, and assume that Event holds with these parameters for the rest of the proof. Notice that

y, as defined in (5), satisfies y ≥ yt (as f(y) > f(x)) and hence t∗ ≥ t.

Note that if k = 2, the pair (x,y), which is a (12)-pattern in f , is output in Line 2c, so the proof is complete

in this case. From now on, we assume that k ≥ 3. We break up the analysis into two cases: t∗ ≥ t+ 3k log `

and t∗ < t+ 3k log `.

Suppose t∗ ≥ t+ 3k log `. We now observe a few facts about the collection J specified in (6). First, notice

that J1, . . . , Jk−2 appear in order from left-to-right, and they lie in [x,y] (as y = yt∗ ∈ [x+ 2t
∗
/(12k), 2t

∗
]).

Second, in the next claim we show that for every i ∈ [k − 2], the interval Ji contains (ε/2p)|Ji| disjoint

(12 . . . k)-patterns.

Claim 3.7. Ji contains (ε/2p)|Ji| disjoint (12 . . . k)-patterns.

Proof. Let J ′i be the interval given by

J ′i = Ih ∪
[
x,x +

2t
∗

12k
· `−(k−2−i)

]
.

Observe that

|J ′i \ Ji| ≤ 2t +
2t
∗

12k
· `−(k−1−i) ≤ 2t

∗

6k
· `−(k−1−i) =

2

`
· 2t

∗

12k
· `−(k−2−i) ≥ 2

`
· |J ′i | =

ε

2p
· |J ′i |,

where for the second inequality we used the bound t∗− t ≥ 3k log ` ≥ log(12) + log k+ (k− 2) log `, and that

` = 4p/ε.
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We have by Theorem 2.6, that J ′i contains at least (ε/p)|J ′i | disjoint (12 . . . k)-patterns in f . Hence, the

number of disjoint (12 . . . k)-patterns in Ji is at least:

ε

p
· |J ′i | − |J ′i \ Ji| ≥

ε

2p
· |J ′i | ≥

ε

2p
· |Ji|,

as required.

By Lemma 3.4, Line 2(d)i outputs a (12 . . . k)-pattern in f with probability at least 1 − δ/2. By a union

bound, we obtain the desired result.

Suppose, on the other hand, that t∗ ≤ t+ 3k log `. In this case, as 2t−1 ≤ |Ih| ≤ 2t
∗

(by choice of t), for one

of the values of t′ considered in Line 2(d)ii we have 2t
′−1 ≤ |Ih| < 2t

′
; fix this t′. The interval Jt′ , defined

in Line 2(d)ii, hence satisfies |Ih|/|Jt′ | ≥ 1/4. As a result, and since Ih ⊂ Jt′ (because t ≤ t∗), the function

g : J → R ∪ {∗} contains an interval-tuple pair (Ih, Th) which is (c, 1/(6k), α)-splittable. By Lemma 3.5,

once Line 2(d)ii considers c0 = c, the sub-routine Find-Good-Splitk(g, ε/(c2k
5), δ/2, c, 1/4) will output a

(12 . . . k)-pattern of gt′ (which is also a (12 . . . k)-pattern of f) with probability at least 1− δ/2. Hence, we

obtain the result by a union bound.

3.5 Query Complexity and Running Time

It remains to prove Lemma 3.2, estimating the number of queries made by Find-Monotone, as well as its

total running time.

Proof of Lemma 3.2. We first claim that the running time is bounded by an expression of the form poly(k)

times the query complexity of Find-Monotone, where the poly(·) term is of constant degree. Indeed, the

only costly operations (in terms of running time) other than querying that our algorithm conducts involve:

• Determining whether the value of f at a certain point is ∗ or not; to this end, note that for any f we

need to evaluate along the way, f(x) is marked by ∗ if and only if it does not belong to some interval

in R, whose endpoints are determined by the recursive calls that led to it. Since the recursive depth

is at most k, this means that the complexity of the above operation is O(k).13

• Given an ordered set of queried elements Q at some point along the algorithm, determining whether

these elements contain a c-increasing subsequence for c ≤ k (this action is taken, e.g., in the last part

of Find-Monotone). This operation can be implemented in time O(c|Q|). Now, the number of such

operations that each queried element participates in is at most k,14 and a simple double counting

argument implies that the running time of these operations altogether is at most O(k2) times the total

query complexity.

13In fact, this complexity can be improved to O(1) if, instead of working with functions of the form f : I → R∪{∗}, we would
have worked with function f : I → R and received the interval of “non-∗ values” as an input to the recursive call.

14More precisely, for the purpose of this section, if an element is queried t > 1 times by our algorithm then we think of it as
contributing t to the total query complexity (since our goal is to prove upper bounds here – not lower bounds – this perspective
is clearly valid); and in this case, the number of operations as above in which it participates is at most k · t.

17



It remains now to prove the bound on the query complexity. Recall that P : R → R is a fixed polynomial;

write pk,ε = P (k log(1/ε)). We fix n, which upper bounds the length of all intervals defining input functions.

Let Φ(k, ε, δ) be the maximum number of queries made by Find-Monotonek(f, ε, δ). Let

Φ(1)(k, ε, δ) = query complexity of Sample-Suffixk(f, ε, δ).

Φ(2)(k, ε, δ) =
query complexity of Find-Within-Intervalk(f, ε, δ, x, y,J ),

where |J | = k − 2.

Φ(3)(k, ε, δ, ξ) =
query complexity of Find-Good-Splitk(f, ε, δ, c, ξ),

where c ∈ [k − 1].

By Lemma 3.3, as well as an inspection of Figure 1 and Figure 2, we have:

Φ(1)(k, ε, δ) ≤ pk,ε ·
1

ε
· log(1/δ) · log n

Φ(2)(k, ε, δ) ≤ 2k · Φ(k − 1, ε/2, δ/(2k))

Φ(3)(k, ε, δ, ξ) ≤ c1k log(1/δ)

εξ2
· Φ(k − 1, εξ/3, δ/3).

Lastly, inspecting Figure 3, we have

Φ(k, ε, δ) ≤ Φ(1)(k, ε/pk,ε, δ)+

c1 · pk,ε ·
k5

ε2
· log(1/δ) ·

(
1 + log n+ Φ(2) (k, ε/(2pk,ε), δ/2) + Φ(3)

(
k, ε/(c2k

5), δ/2, 1/4
))

≤ qk,ε ·
1

ε2
· log(1/δ) · log n + qk,ε ·

1

ε3
· (log(1/δ))2 · Φ(k − 1, ε/qk,ε, δ/(3k))

≤
(
kk · (log(1/ε))k · 1

ε
· log(1/δ)

)O(k)

· log n,

where Q : R → R is a fixed polynomial of large enough (constant) degree and qk,ε = Q(k log(1/ε)). For

the last line we use that Φ(2)(1, ·, ·) = Φ(2)(2, ·, ·) = Φ(3)(1, ·, ·, ·) = Φ(3)(2, ·, ·, ·) = 0, and we note that the

parameter replacing ε never falls below ε/(k log(1/ε))O(k), so the factor of log n at each iteration is at most(
kk(log(1/ε))k(1/ε) log(1/δ)

)O(k)
.
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