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Abstract

The field of property testing studies what can be deduced from data given limited access to it. While
research in property testing has blossomed in the last two and a half decades, a large majority
of the work until now has been devoted to data that is relatively unstructured, like probability
distributions, or to properties with an inherent underlying symmetry, like graph properties (in
which the labels are assumed to “not matter”, a symmetry assumption that might not always be
realistic). In contrast, the understanding of property testing in highly structured settings, where

symmetry cannot be assumed and utilized, is more limited.

This thesis focuses on property testing in the highly structured regime. It develops several new
tools and frameworks which advance the state of the art in several central fronts of structured prop-
erty testing, and exhibits surprising combinatorial phenomena that arise in the study of problems

in this regime. The contributions are divided into three main lines of work.

The first part concerns property testing in ordered graphs. A well-known result by Alon and
Shapira asserts that any hereditary unordered graph property (where the labels of the vertices do
not matter) is testable with a constant number of queries. The proof of this statement, however,
heavily relies on the underlying symmetry of the problem, and does not apply to graphs where the
labels are structured (are ordered, say, or represent the rows and columns of an image, where pixel
locations are important). It was asked by Alon, Fischer and Newman in 2007 whether these results
can be extended to the structured setting. We answer this affirmatively, developing Szemerédi-

regularity schemes that are suitable for ordered settings.

The second part considers detection of global structural patterns in sequential data. Given
a sequence of real numbers that contains many disjoint copies of a (constant-length) structural
pattern, how can one detect one copy of the pattern efficiently? As it turns out, this problem
lends itself to beautiful combinatorial structure, whose investigation sheds light on its algorithmic
understanding. This answers a recent open question by Newman, Rabinovich, Rajendraprasad,
and Sohler, and yields tight adaptive and non-adaptive testing algorithms for monotone patterns
(curiously, the non-adaptive query complexity for monotone patterns of fixed length k in data of
length n is ©((logn)l°e2#])) as well as lower bounds showing that for almost all patterns, the

effectiveness of non-adaptive algorithms beyond naive uniform sampling is negligible.

The third part studies local properties in structured multi-dimensional data from the property
testing perspective; roughly speaking, a property is local if it is characterized by small forbidden
consecutive substructures, a definition that captures many previously investigated properties in the
structured regime. The main result is that any local property of multi-dimensional arrays is testable
with a sublinear number of queries via a canonical non-adaptive testing algorithm, querying sphere-
like structures in the data. This generic approach is widely optimal for one-dimensional arrays,

even among adaptive methods, and for some high-dimensional properties it is optimal among non-



adaptive algorithms. It provides the first known sublinear-query test for challenging properties like
convexity or submodularity in high dimensions. In addition, we prove a combinatorial modification
lemma on the structure of local properties, which allows us to prove the efficient testability of

pattern matching type properties. This answers a question of Fischer and Newman from 2001.
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Chapter 1

Introduction

The recent explosion of data-driven approaches in virtually all areas of science and engineering has
raised the need to develop efficient algorithms for understanding and analyzing the data, even when
one has very limited access to it. The field of property testing investigates exactly this topic: what
can and cannot be inferred from data given small samples (possibly adaptively crafted, in a data-
driven manner). Since its initiation by Rubinfeld and Sudan [122] and by Goldreich, Goldwasser,
and Ron [83] around twenty five years ago, this field of study in computer science has enjoyed
tremendous progress, stemming both from better mathematical (usually combinatorial, algebraic
and topological) understanding of data and what small samples reveal in it, and from remarkable
algorithmic achievements in exploiting limited access to data for decision-making, that in many
cases have built upon the structural foundations. See e.g. [80, 81, 119, 120] for recent books and

surveys.

Formally, the meta-problem in property testing is as follows: we are given query access to the
data, represented as an unknown function f: X — Y with known domain X and range Y. The task
is to infer efficiently and with good probability whether f satisfies some predetermined property
P, or is far from satisfying the property. Given a proximity parameter € > 0, we say that f is e-far
from P if one needs to modify it on | X| inputs to make it satisfy P. Efficiency is measured in
terms of query complexity, that is, how many queries to the unknown function f one must make
in order to complete the above algorithmic task; sometimes the running time is also of interest.
Note that since property testing algorithms operate in the sublinear domain, where one cannot
even assume access to the whole input, answers are inherently always approximate, and algorithms

are always randomized.

Generally, our understanding of property testing is much better when the data has a symmet-
ric, easier-to-exploit structure. This phenomenon was observed and studied in numerous areas of
property testing. For example, in probability distribution testing, symmetric parameters (like the
entropy of a distribution or its distance to uniformity) are precisely those parameters characterized

by the fingerprint — the histogram of the histogram of the sample generated by the distribution —



which in turn led to an excellent understanding of testability in the symmetric regime [135]. In
graph property testing (in the dense regime), until recently property testing was well-understood
only under the assumption that the property at hand is invariant under vertex-relabeling. In
the algebraic front, symmetry and invariances were investigated thoroughly [129], and the general
perception is that testing problems become “easier” with more symmetry.

In contrast, for property testing in structures that do not enjoy such inherent symmetry, like
sequential data (representing e.g. text, time series data, or biological data), images, and high-
dimensional boolean functions, progress has been much slower. Generally, powerful testability
results for large families of properties have been much scarcer for these less-symmetric objects, and
advances were mostly restricted to a few specific properties of interest, like monotonicity in boolean
functions, or convexity and connectivity in images.

In this thesis, we systematically study how to make property testing algorithms “work” when
the data is highly structured and does not have any inherent symmetries. The results range from
breaking a symmetry barrier in graph property testing, to devising optimal algorithms and lower
bounds for detecting global patterns in sequential data, and to the discovery of new generic tools
to test any local property in highly structured settings. All problems discussed in this thesis lend
themselves to a beautiful combinatorial structure, whose investigation is key to the algorithmic
understanding of the problem. Some of the approaches presented here require the development of
new combinatorial notions and parameters, which seem to be interesting in their own right.

The thesis is partitioned into three parts. The first part concerns graph property testing in the
ordered setting (i.e., without symmetry between the vertices). The second part studies sequential
data from the property testing perspective, specifically the problem of detecting global structured
patterns in sequential data. In the third part we investigate the testability of local properties in
the structured regime. For each of these parts, we now describe the problem we address and its
background, the main algorithmic results, and the combinatorial ideas behind these results.

We henceforth assume that the reader is familiar with standard property testing notation and

definitions; see Section 1.4 for the relevant notation.

1.1 Ordered Graphs: Regularity and Removal

The first part of this thesis (Chapter 2) develops removal lemmas (and, as a byproduct, very
general testability results) for graphs and matrices without any symmetry requirement. A long
line of work in property testing focused on characterizing the efficiently testable unordered graph
properties, which by definition are closed under relabeling of the vertices. However, these works do
not address the case where vertex labels are important, e.g., in ordered graphs or images (which can
be viewed as ordered bipartite graphs, where the locations of pixels, and so of rows and columns
of the representing matrix, are meaningful). All results mentioned here are for the dense graph

model, where a graph is represnted by a function G: ([g]) — {0, 1}.
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In the seminal paper of Goldreich, Goldwasser and Ron [83] it was shown that all unordered
graph properties that can be represented by a certain graph partitioning, including properties such
as k-colorability and having a large clique, are testable with a constant number of queries (see
also [86]). Alon, Fischer, Krivelevich and Szegedy [7] proved that the unordered property of F-
freeness, i.e., of not containing as an induced subgraph any F' € F (ignoring the vertex labels) is
testable with a constant number of queries for any finite family F of forbidden graphs. Their result
follows directly from a graph-theoretic statement, the induced graph removal lemma, which is a
generalization of the well-known graph removal lemma of Ruzsa and Szemerédi [5, 131], and states
the following. For any finite family F of unordered graphs and € > 0 there exists ¢ = ¢(F,e) > 0,
such that for any graph G which is e-far from F-freeness, a random induced subgraph of G on ¢
nodes contains an induced copy of some F' € F with probability at least 2/3. The proof uses a
strengthening of the celebrated Szemerédi graph regularity lemma [131], known as the strong graph
reqularity lemma.

Proving testability results for graphs directly from removal lemmas, which in turn are proved
using regularity lemmas, has since become the go-to method for exploring testability in graphs (and
for good reason; later it was shown [9] that constant-query testability and regularity are equivalent
in a rather strong sense). Alon and Shapira [12] generalized the induced graph removal lemma
of [7] to infinite families. Since any hereditary graph property P (i.e., any property of unordered
graphs that is closed under deletion of vertices) is characterized by a family F (finite or infinite)

of forbidden induced subgraphs, these results imply a remarkably general testability result.
Theorem ([12]). Any hereditary property of unordered graphs is constant-query testable.

An efficient finite induced removal lemma for binary unordered matrices, with no row and
column order, was obtained by Alon, Fischer and Newman [8] in 2007. Here, a matrix is a function
M: [n] x [m] — X, where X is some fixed alphabet (say, |X| = 2 corresponds to a binary matrix).
An s x t submatrix is any restriction of M to specific s rows and ¢ columns (not necessarily
consecutive), where the order of the rows and columns is inherited from M. The main tool in [8] is
an efficient conditional regularity lemma for ordered binary matrices, and it was conjectured there
that this regularity lemma can be used to obtain a removal lemma for ordered binary matrices.
Again, by ordered here we mean that, unlike all previously mentioned results, labels in the forbidden
submatrix are important: being free of a forbidden family of ordered (labeled) materices F amounts
to not containing any of them as an isomorphic copy with the same row and column order. Thus,

there is no symmetry between the labels that we can utilize.

Conjecture (Ordered matrix removal lemma [8]). For any finite family F of ordered binary

matrices and any € > 0 there exists 6 = 0(F,e) such that any n X n binary matriz which is

a+b

e-far from F-freeness contains at least dn copies of some a X b matrix from F.

The main result in the first part is a proof of this conjecture from 2007, which in fact holds for



edge-colored graph and matrices over any fixed alphabet, and unlike all previous results for graphs,

does not assume any symmetry condition on the labels.

Theorem. Any hereditary property of graphs or matrices (over a fized alphabet) satisfies a removal

lemma, and is thus constant-query testable; this holds for both ordered and unordered properties.

Technical Foundations. Proving graph removal lemmas (and, consequently, testability results
for hereditary graph properties) typically goes through the definition of a suitable “regularity
schemes”: a simplified, constant size structure that satisfies two crucial properties. The first of
them is closeness to the original graph, that is, one can make the original graph identical to a
blowup of the regularity scheme with only a very small number of modifications. On the other
hand, the scheme should be representative enough of the original graph, in the sense that any
substructure found in it must also be abundant in the original graph.

For the most basic (non-induced) graph removal lemma, the regularity scheme is just the regular
partition given by Szemerédi regularity lemma [131]. In the more complicated case of the induced
graph removal lemma (as well as in its infinite analogue), more complicated, nested regularity
schemes are required. However, even these schemes fail to capture order. The main technical
contribution here is the development of substantially more sophisticated schemes that take order
into account. It is shown how to construct a scheme that provides both order-regularity (extending
order-regularity notions for sequences) and graph-regularity simultaneously. Along the way, and
in order to address both order- and graph-regularity, a new type of Ramsey-type theorem with
undesirable edges in multipartite graphs is developed. Roughly speaking, this theorem states that
any sufficiently large multipartite graph contains a substructure which is monochromatic between

each two parts, while also not having many undesirable edges in the structure.

References. The results of this chapter appear in:

e N. Alon, O. Ben-Eliezer, E. Fischer, Testing hereditary properties of ordered graphs and
matrices, Proc. 58th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
2017, 848-858.

1.2 Property Testing Algorithms for Sequential Pattern Detection

In the second part of the thesis (Chapters 3-5), we consider a structured, massively parameterized
property testing problem in sequences f : [n] — R, raised and first studied by Newman, Rabinovich,
Rajendraprasad, and Sohler [108, 109]. Fix a permutation! 7: [k] — [k]. A sequence f: [n] — R
contains 7 as an order pattern if there exist iy < iy < ... <1y such that f(i;) < f(i;/) if and only
if j,j' € [k] satisfy that 7(i;) < m(¢j:). That is, intuitively, if we consider the subsequence of f in

'Despite calling 7 a permutation here, we view it as a combinatorial object rather than a group-theoretic one.
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locations i; < ... < i and only look at the relative order of these values, this is the exact same
structure as in w. Considering this from the property testing perspective, Newman et al. initiated
the study of testing order pattern freeness, i.e., the property of not containing a fixed known pattern
m. The focus is on the regime where k£ and the proximity parameter € are constant, and on one-sided
error tests, where to deduce that a sequence is not pattern-free, the test must prove the existence
of a pattern. This problem is naturally motivated by data-series analysis, where the central task
is to efficiently identify global patterns in massive-scale sequential data, and is closely related to
other classical problems in sequences, like the estimation of the longest increasing subsequence
(LIS). The simplest special case of the problem, where m = (2, 1), corresponds to perhaps the most
well-investigated property in the testing literature, monotonicity testing (see Section 3.1 for an
extensive background).

In their paper [109], Newman et al. proved several results of interest, hinting that this problem
underlies rich combinatorial phenomena, highly dependent on the structure of the pattern = and
the adaptivity of the property testing algorithm. With regards to structure, it was shown that -
freeness is very efficiently testable non-adaptively if and only if 7 is monotone: on the one hand, if
m=(1,2,...,k)orm = (k,k—1,...,1) then m-freeness is testable non-adaptively with (log n)o(kz)
non-adaptive queries. On the other hand, any non-monotone pattern requires 2(y/n) queries -
an exponential separation. This is shown to be near-tight for 7 = (1,3,2). From the adaptivity
perspective, it was shown that again there is an exponential separation: compared with the Q(y/n)
non-adaptive lower bound, the pattern = = (1,3,2) requires only a polylogarithmic number of
adaptive queries. In summary, the results of Newman et al. reveal that both the structure of the
pattern 7 (i.e., monotone vs. non-monotone) and our ability to react adaptively matter a lot in
this problem. However, the general task of understanding the query complexity of optimal tests for
m-freeness — for any m — both in the adaptive and the non-adaptive case, has remained wide open.

The major open problems that they pose are the following.

1. Adaptive case. Is it true that w-freeness is testable adaptively with query complexity poly-

logarithmic in n for any permutation 77

2. Non-adaptive case. How does the structure of a pattern w correlate with the query complexity
of an optimal non-adaptive test for m-freeness? In particular, are there infinitely many non-
monotone permutations 7 for which 7-freeness is testable with query complexity O(n%99)?
In this thesis, we make progress in the understanding of both the adaptive and the non-adaptive

front. While the first open question above seems very difficult, we settle the second question.

Together with the work of Newman et al., the results presented here provide an essentially full

understanding of monotone patterns (both the adaptive and the non-adaptive case) for fixed ¢ and

k, as well as good (but not yet complete) understanding of the power of non-adaptive tests. The

results shed light on multiple intriguing combinatorial parameters that arise naturally in the study



of this problem (and to the best of our knowledge, did not appear before in the combinatorial

literature), which seem very interesting on their own right.

1.2.1 Monotone Patterns

The results of Newman et al. [109] show that for any monotone pattern 7 = (1,2,...,k), the
property of order pattern freeness paramtrized by 7 is testable with a polylogiathmic number of
queries, (logn)2*) for fixed k and e (which will in general be our domain of interest here). But

what is the correct polylogarithmic dependence here?

While the authors of [109] did not try to optimize the above dependence, their approach yields,

k). Their main observation is the decomposability of

in principal, a query complexity of (logn)©(
this testing problem when 7 is monotone: Namely, if we concatenate two monotone subsequnces
of f of lengths ¢,k — ¢, where the starting point of the second subsequence is both “higher” (in
terms of value) and “further to the right” (in terms of location) than the last element of the
first subsequence, then together they form a monotone subsequence of length k. This property
allows one to test (1,2,...,k)-freeness recursively (though non-adaptively; namely, the collection
of indices to be queried is defined recursively). By carefully unrolling the recursion and enumerating
over possible “widths” of copies (i.e., the typical distance between the end of each copy and its

O(k) yupper bound. On the other hand, a

beginning) on a logarithmic scale, one can obtain the (logn)
lower bound of Q(logn), for both adaptive and non-adaptive algorithms, follows from monotonicity
testing lower bounds [63, 66], i.e. the case k = 2, for which it is tight. Between (logn)°®*) and

Q(logn), what would be the query complexity for non-adaptive algorithms? does adaptivity help?

We resolve these two questions here. Strikingly, the answer to the first question is precisely
O((logn)lee2kl) for any fixed k and e. The answer to the second question is positive, and in
fact, for any fixed k, only O(logn) queries are required. That is, despite the fact that testing
(1,2,...,k)-freeness is structurally much more complicated to analyze than monotonicity testing,
and the fact that there is a non-adaptive separation between these two properties when & > 4, for
adaptive algorithms the query complexity in both tasks is of the same order of magnitude for every
fixed k.

Splittable Intervals and Growing Suffixes. The main building block for the new results on
testing monotone patterns is a surprisingly powerful characterization of sequences that are far from
(1,2,...,k)-freeness, described in detail in Chapter 3. This is a “structure versus chaos” type
characterization (see e.g. the book of Tao [133] on such characterizations), stating that either most
disjoint copies of (1,2, ..., k) have one out of constantly many possible widths (the “structure” case,
named splittable intervals), or these copies are interwoven enough to organically form many long

and easy-to-detect monotone subsequences in the data (the “chaos” case, named growing suffizes).

6



Non-Adaptive results for monotone patterns. The lower bound of Q2(logn) for monotonicity
testing constructs logn examples, each with a different “distance profile”, where queries that are
helpful in determining whether a sequence has any particular profile are completely useless for
extracting information about other profiles. This construction can be iterated: for the pattern = =
(1,2,...,k), one can construct Ggg Z) different profiles in a recursive fashion. The key observation is
that with ¢ queries, one can only capture g — 1 different iterated profiles, which establishes the non-
adaptive lower bound. The more interesting direction is algorithmic, and shows the O((log n)l°g2+])
upper bound. In the growing suffixes (i.e., chaotic) case, monotone subsequences are easy to find
and this case equires just O(logn) queries for any fixed k. The splittable intervals case requires
substantially more work; the main idea here is to repeatedly apply this condition to construct
a “tree profile” with k nodes, which describes the typical structure of (1,2,...,k)-copies in the
sequence. The key algorithmic observation is that with only O(logn) queries, one can shatter
any tree profile, non-adaptively, in a way that all the remaining subtrees are of size at most k/2.

Applying this argument inductively leads to the O((logn)!'82%)) upper bound. See Chapter 3.

Adaptive results for monotone patterns. The algorithmic approach of the non-adaptive case,
which enumerates over all tree profiles, cannot carry on to the adaptive setting. Indeed, all previous
methods enumerate over all possible widths at any given depth of the recursion, incurring a O(logn)

multiplicative price at any such depth.

Instead, the approach here is based on “wishful thinking”. One makes only O(logn) queries,
and picks a couple of elements believed to be the endpoints (i.e., the 1- and k-entries) of some
(1,2,...,k)-copy. It is shown that with good probability, either this couple of elements indeed
forms the endpoints of a copy (the hitting case), or they are much too wide to be such endpoints
(the overshooting case). The key observation, combining a strengthened form of the aforementioned
growing suffixes vs. splittable intervals characterization with additional combinatorial ideas. shows
that surprisingly, the overshooting case can also be handled efficiently. To the best of our knowledge,
these combinatorial ideas were not used before in the property testing literature. See Chapter 4

for more details.

References. The results of these chapters appear in:

e O. Ben-Eliezer, C. Canonne, S. Letzter, E. Waingarten, Finding monotone patterns in sublin-
ear time, Proc. 60th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
2019, 1457-1482.

e O. Ben-Eliezer, S. Letzter, E. Waingarten, Optimal adaptive detection of monotone patterns.
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1.2.2 Non-Monotone Patterns

The results of Newman et al. [109] indicate that for some patterns, even sophisticated non-adaptive
algorithms are almost useless. Specifically, while most naive test, based on uniform sampling,

1-1/ k) queries to locate a pattern, there exist patterns which require Q(nl_Q/ (kH))

requires O(n
queries. This thesis substantially extends the understanding of the non-adaptive regime. On the
positive side, it is shown that any m can be found using O(n'~'/(*=1)) queries. The algorithm
combines random samples with querying of consecutive intervals of elements. Conversely, for any
fixed k there exist patterns with a matching Q(nl_l/ (k_l)) lower bound on the query complexity.
This phenomenon is in fact much more general: for almost all patterns of length k (a fraction that
tends to 1 as k — oo) there is a non-adaptive lower bound of Q(nl_l/ (k_g)), thereby establishing that

1-1/(k=0(1) | In other words, the main message

the non-adaptive complexity of all such patterns is n
here is that sophisticated non-adaptive methods are almost useless, they are barely sublinear, and
improve upon uniform sampling very marginally. Additionally, a structural hierarchy theorem is
proved, which shows that for any 1 < £ < k — 1, there are patterns whose non-adaptive complexity
is ©(n'~1/*). This settles the second part of the second open question above, from [109].

From the combinatorial perspective, the lower bounds proved here seem closely related to a
combinatorial parameter of permutations, the unique signed partition number, which has not been
defined and investigated before; we conjecture that in fact, this parameter controls the non-adaptive
query complexity. The parameter is rather complicated and in this introduction we present a
simpler and more elegant parameter, the stitching number, which is of the same spirit, and whose
investigation implies the aforementioned general lower bound for almost all length-k patterns. Given
a pattern m with || = k and where (assuming without loss of generality that 7=1(1) < 7—1(k))
the stitching number s(7) of 7 is the number of pairs of neighboring elements one needs to stitch

together, so that the union of these stitched pairs satisfies the following;:
1. For all pairs (a,b) in the stitching, a < b and 7=(b) = 7~ !(a) + 1.
2. For any element ¢ € [k], there exists a pair (a,b) in the stitching where a < i <b.

It is not hard to verify that almost all patterns of length k have stitching number 2 or 3. Our lower
bounds imply that any pattern 7 requires Q(n!~Y/(*#=5(m))  thereby proving the aforementioned
general lower bound. Moreover, the hardest-to-test patterns are those where s(m) = 1, that is, 1

and k are neighbors. See Chapter 5 for more details.

References. The results of this chapter appear in:

e O. Ben-Eliezer, C. Canonne, Improved bounds for testing forbidden order patterns, Proc. 29th
ACM-STAM Symposium on Discrete Algorithms (SODA), 2018, 2093-2112.
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1.3 Understanding Locality in Structured Property Testing

In the third part of the thesis, Chapters 6-7, we consider local properties in multi-dimensional arrays.
A d-dimensional array over the alphabet ¥ is a function A: [n]® — ¥. In the one dimensional case, a
property is considered k-local if it can be defined by a collection of forbidden consecutive substrings
of length k. For example, the property of monotonicity is 2-local: an array is non-decreasing if and
only if there is no pair of consecutive elements in A that are decreasing, that is, no 4 such that
A(i) > A(i 4+ 1). More generally, a property of d-dimensional arrays is k-local if it can be defined
by a collection F of “forbidden” consecutive d-dimensional patterns of size k x k x ... x k. That
is, A satisfies the local property defined by F if for any (a1, ...,aq) € [n — k]%, there is no F € F
satisfying A(ay + z1,...,aq + £4) = F(x1,...,xq) for all (z1,...,24) € [k]%.

Some of the most well-investigated and interesting properties in the testing literature (and many
properties never investigated from the property testing perspective) are local. Monotonicity and
Lipschitz continuity are 2-local for any d. (Discrete) convexity is usually 3- or 4-local (depending
on the definition). More generally, properties defined by discrete derivatives of order k are (k + 1)-
local. Submodularity is 2-local. Many problems in more applied areas, like computational biology
or computer vision, are k-local for small k. See Section 6.1 for a definition and discussion of these
properties.

Despite being relatively natural and capturing a wide range of properties, the above definition
of locality has never been formally defined and analyzed in the literature. In this part, general
testability results are proved for all local properties. Furthermore, improved bounds are obtained
for the property of pattern-freeness, where F' consists of a single forbidden pattern, through a

combinatorial analysis of a pattern deletion problem.

1.3.1 Testing Local Properties: Follow the Boundary

The main result of Chapter 6 is a generic one-sided error test for all k-local properties in d-
dimensional arrays over any finite (but not necessarily bounded-size) alphabet ¥. The query com-
plexity of the test is O(g -log &) for d = 1 and 61% -(O(n))*1 for d > 1. When k and ¢ are
fixed, these expressions are O(logn) and O(n®1), respectively. The results imply, in particular,
that any property with locality o(n) is sublinearly testable. They are tight in various cases, both
in one dimension and in higher dimensions.

Interestingly, the generic test proposed here gives the first sublinear-query test for two chal-
lenging properties in high dimensions, convexity and submodularity. The query complexity for
both is O(n"1). This, obviously, leaves much to be desired. Subsequent work by Belovs, Blais,
and Bommireddi [20] shows that to get a significant improvement for convexity testing, one would
have to understand how to use adaptivity when testing these local properties. Specifically, without
adaptivity, the O(n) query complexity of the generic test is optimal for two-dimensional convexity,

and for higher fixed d, there is a lower bound of Q((n/d)%?) for testing d-dimensional convexity
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with non-adaptive algorithms.

Technical Foundations. Let us revisit the original proof that monotonicity is testable with
O(logn) queries, by Ergiin et al. [63]. Pick ¢ € [n] uniformly at random, and consider an imaginary
binary search in [n], starting in the middle point of the array and culminating in i. Let @ C [n]
be the set of all visited points in the binary search. The main claim of [63] is that if a sequence
is e-far from monotonicity, then with probability at least e, querying @) will reveal a violation to
monotonicity and lead to rejection.

A striking feature of the above idea is that it (essentially, with suitable extensions) can be
applied to any local property P. For simplicity, let us focus on the simplest case d =1 and k = 2.
We say that a consecutive subarray S of an array A is unrepairable if, when fixing the values on
the boundaries of the subarray S (i.e., its first and last element) but allowing one to change the
values in the interior of S arbitrarily, the modified S will never satisfy 7. For monotonicity, this
notion is rather natural: S is unrepairable if and only if its first element is larger than the last one.
However, as it turns out, the above test for monotonicity actually works for any local property, with
the only change being that instead of verifying whether pairs of queried elements do not violate

monotonicity, we check whether these pairs are unrepairable.

References. The results of this chapter appear in:

e O. Ben-Eliezer, Testing local properties of arrays, Proc. 10th Innovations in Theoretical Com-
puter Science (ITCS), 2019, 11:1-11:20.

1.3.2 Testing Meets Pattern Matching: the Modification Lemma

The generality of the above test makes it, naturally, sub-optimal for many properties of interest.
One of them is the property of P-freeness for a single forbidden pattern P, studied in Chapter 7. The
motivation for studying this property stems from pattern matching applications in computational
biology, computer vision, and other areas, where the fast detection of local patterns is among the
most important algorithmic tasks. The main result here is a tolerant test for pattern freeness (for
large enough patterns), whose query complexity depends only on the dimensionality d and (inversely
linearly) on €. Crucially, unlike the above generic test, the complexity is independent of n. In one
dimension, it is shown that computing the exact distance of an array A from P-freeness can be
done in linear time (in high dimensions, however, exactly computing the distance is NP-hard [72]).
Indeed, there exists an explicit “hitting set” of entries in A, whose modification simultaneously
deletes all existing P-copies in A, without creating any new copies of P in A. That is, the hitting
number of the copies in P is equal to the distance from freeness. This observation seems useful in
computational biology, where it is required to clean genetic sequences from undesirable patterns

with as few modifications as possible; we leave this as an open problem.
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Technical Foundations. The combinatorial core of the proof, which we call a modification
lemma (as it is somewhat similar in spirit to removal lemmas), states the following: for almost
any large enough d-dimensional pattern P, and any array A containing a copy of P, there exists
an entry within the copy with the following property: if we change the value of this entry, the
copy of P will obviously be destroyed, but additionally, no new copies of P will be created. Such
a modification lemma leads naturally to a removal lemma: it means that the number of P-copies

in A is at least its distance from P-freeness.

References. The results of this chapter appear in:

e O. Ben-Eliezer, S. Korman, D. Reichman, Deleting and testing forbidden patterns in multi-
dimensional arrays, Proc. 44th International Colloquium on Automata, Languages and Pro-
gramming (ICALP), 2017, 9:1-9:14.

1.4 Notation

The general setting in property testing is as follows. We are given query access to an unknown
function f: X — Y where the domain X and the range Y are known. A query is the operation
of obtaining the value of f(x) for x € X of our choice. Given a property P (a family of functions
from X to Y), and a proximity parameter ¢ > 0, we say that f is e-far from P if any function
g € P differs from f on at least €| X| inputs. if f is not e-far from P, then we say that it is e-close
to P. The algorithmic task in property testing is to decide, with success probability at least (say)
2/3, whether f satisfies P or is e-far from P. Here P and ¢ are generally known in advance.? An
algorithm for the above task is called an e-test. There are also other variants of the testing task,
such as tolerant testing, where the algorithm is required to distinugish between e;-closeness to P
and eo-farness from P, for some 0 < g1 < 2. Many of the algorithms discussed in this thesis are
non-adaptive; by this we mean that all queries are chosen in advance, before seeing any of the
values of f. Any algorithm whose decisions depend in some way on the results of queries it makes
is considered adaptive.

A property testing algorithm which, for f € P always (with probability 1) decides correctly that
f indeed satisfies P, is said to have one-sided error. Any testing algorithm that does not satisfy
this condition has two-sided error.

Along the thesis we use several standard notions. [n] denotes the set {1,2,...,n}; the notion
of O(-) will usually refer to an expression that hides terms that are polylogarithmic in n (but
not always; we will indicate whenever this is not the case). We sometimes omit floor and ceiling

signs when they are not essential; note that one of the results in this thesis has a floor sign in

2 Another model for property testing, prozimity oblivious testing, does not assume that ¢ is known, and instead
focuses on designing basic testing algorithms with small success probability, which can be amplified by repeating the

basic test many times. See e.g. the book of Goldreich [81] for an extensive discussion.
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the exponent, which is essential and included wherever relevant. Logarithms are in base 2, unless
stated otherwise. We will, at times, suppress polynomial factors by writing poly(+) to refer to a large
enough polynomial in the relevant parameter, whose degree is a large enough universal constant.
Terms such as Og(-) and Q(-) are similar to O(-) and Q(-) except that the underlying constants

may depend on the parameter k.
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Part 1

Ordered Graphs:

Regularity and Removal
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Chapter 2

Removal Lemma for Ordered Graphs

and Matrices

The results in this chapter appear in [4].

We focus here on property testing of two-dimensional structures over a fixed finite alphabet 3, in
particular graphs and matrices, and start with some notation. Graphs are functions G (‘2/) —{0,1}
where V' is the vertex set; more generally edge-colored graphs (with fixed finite color set X) are
functions G: (‘2/) — Y. Matrices over the alphabet 3 (or images) are functions M: U x V — 3.
We generally consider edge-colored graphs rather than standard graphs, as the added generality
will prove useful later; the term graph usually refers to an edge-colored graph. Thus, any collection
of (edge-colored) graphs G: (‘2/) — XY is an ordered graph property. As a special case, an unordered
graph property is an ordered graph property that is also invariant under verter permutations: If
G € P and 7 is any permutation on Vg, then the graph G7, defined by G™ (7w (u)w(v)) = G(uv) for
any u # v € Vg, satisfies G™ € P. Similarly, an (ordered) matriz property, or an image property, is
a collection of functions M : [m] x [n] — 3. We generally assume here (unless it is explicitly stated
that we consider unordered graphs) that the vertex set V' of a graph G has a total ordering (e.g.
the natural one for V' = [n]), which we denote by <. The (induced) ordered subgraph of the graph
G: (g) — Y onU CV, where the elements of U are u; < ... < uy, is the graph H : ([g]) — ¥ which
satisfies H(ij) = G(u;u;) for any i < j € [k]. For a family F of “forbidden” graphs, the property
Pr of F-freeness consists of all graphs G for which any ordered subgraph H of G satisfies H ¢ F.
Finally, a property P is hereditary if it is closed under taking induced subgraphs. That is, for any
G € P and ordered subgraph H of G, it holds that H € P. Note that a property P is hereditary if
and only if P = Px for some (finite or infinite) family F of graphs over 3. The analogous notions
of ordered subgraphs, F-freeness and hereditary properties for matrices are “structure preserving”.
Here, the ordered submatriz of the matrix M : [m] x [n] — ¥ on A x B, where the elements of A and
Bareay <...<agand by <...<by,is the matrix N : [k] x [[] = X defined by N (i, j) = M (a;, b;)
for any i € [k] and j € [I].
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2.1 Introduction

Some of the most interesting results in property testing have been those that identify large families
of properties that are efficiently testable, and those that show that large families of properties
cannot be tested efficiently. Omne of the most widely investigated questions in property testing
has been that of characterizing the efficiently testable unordered graph properties. In the seminal
paper of Goldreich, Goldwasser and Ron [83] it was shown that all unordered graph properties
that can be represented by a certain graph partitioning, including properties such as k-colorability
and having a large clique, are constant-query testable (see also [86]). Alon, Fischer, Krivelevich
and Szegedy [7] showed that the property of F-freeness is constant-query testable for any finite
family F of forbidden unordered graphs (here the term unordered graphs refers to the usual notion
of graphs with no order on the vertices). Their main technical result, now known as the induced

graph removal lemma, is a generalization of the well-known graph removal lemma [5, 124].

Theorem 2.1 (Induced graph removal lemma [7]). For any finite family F of unordered graphs
and € > 0 there exists 6 = §(F,e) > 0, such that any graph G which is e-far from F-freeness

contains at least dn? copies of some F € F with q vertices.

The original proof of Theorem 2.1 uses a strengthening of the celebrated Szemerédi graph
regularity lemma [131], known as the strong graph regularity lemma.

It is clear that having a removal lemma for a family F immediately implies that F-freeness is
constant-query testable: A simple test which picks a subgraph H whose size depends only on F and
e, and checks whether H contains graphs from F or not, is a valid one-sided test for F-freeness.
Hence, removal lemmas have a major role in property testing. They also have implications in
different areas of mathematics, such as number theory and discrete geometry. For more details, see
the survey of Conlon and Fox [56].

By proving a variant of the induced graph removal lemma that also holds for infinite families,

Alon and Shapira [12] generalized the results of [7]. The infinite variant is as follows.

Theorem 2.2 (Infinite graph removal lemma [12]). For any finite or infinite family F of unordered
graphs and € > 0 there exist § = §(F,e) > 0 and qo = qo(F,¢), such that any graph G which is

e-far from F-freeness contains at least dn? copies of some F € F on q < qo vertices.

Theorem 2.2 implies that any hereditary unordered graph property is constant-query testable,

exhibiting the remarkable strength of Szemerédi regularity based approaches for property testing.

Theorem 2.3 (Hereditary graph properties are constant-query testable [12]). Let ¥ be a finite set
with |X| > 2. Any hereditary unordered graph property over ¥ is constant-query testable.

Alon, Fischer, Newman and Shapira later presented [9] a complete combinatorial characteriz-
ation of the graph properties that are testable (with two-sided error) using a constant number of

queries, building on results from [70, 86]. Independently, Borgs, Chayes, Lovész, S6s, Szegedy and
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Vesztergombi obtained an analytic characterization of such properties through the theory of graph
limits [37]. See also [101, 102].

An efficient finite induced removal lemma for binary matrices with no row and column order
was obtained by Alon, Fischer and Newman [8]. In this case, ! is polynomial in ¢! (where ¢,§
play the same roles as in the above removal lemmas). It was later shown by Fischer and Rozenberg

[71] that when the alphabet is bigger than binary, the dependence of 6! on e~}

is super-polynomial
in general. Actually, the main tool in [8] is an efficient conditional regularity lemma for ordered
binary matrices, and it was conjectured there that this regularity lemma can be used to obtain a

removal lemma for ordered binary matrices.

Conjecture 2.4 (Ordered binary matrix removal lemma [8]). For any finite family F of ordered
binary matrices and any € > 0 there exists § = 6(F,e) such that any n X n binary matriz which is

a+b

e-far from F-freeness contains at least dn copies of some a X b matrix from F.

In contrast to the abundance of general testing results for two-dimensional structures with an
inherent symmetry, such as unordered graphs and matrices, no similar results for ordered two-
dimensional structures (i.e. structures that do not have any underlying symmetry) have been
established. Even seemingly simple special cases, such as F-freeness for a single ordered graph F',
or M-freeness for a single 2 x 2 ordered matrix M, are not known to be constant-query testable
in general [6]. A good survey on the role of symmetry in property testing is given by Sudan [129],
who suggests that the successful characterization of the constant-query testable unordered graph
properties is attributable to the underlying symmetry of these properties; See also [84].

Despite the lack of general results as above for the ordered case, property testing of multi-
dimensional ordered structures has recently been an active area of research. This is discussed in
the third part of this thesis. Ordered graphs were less investigated in the context of property testing,
but are the subject of many works in Combinatorics and other areas. See, e.g., a recent work on
Ramsey-type questions in the ordered setting [57], in which it is shown that Ramsey numbers of
simple ordered structures might differ significantly from their unordered counterparts.

Finally, we mention a relevant result on one-dimensional structures. Alon, Krivelevich, Newman
and Szegedy [10] showed that regular languages are constant-query testable. One can combine this
result with the well-known Higman’s lemma in order theory [91] to show that any hereditary

property of words (i.e. one dimensional functions) over a finite alphabet is constant-query testable.

Our contributions

We prove generalizations of Theorems 2.3 and 2.2 to the ordered setting, as well as analogous results

for matrices. The following result generalizes Theorem 2.3.

Theorem 2.5 (Hereditary properties of ordered graphs are constant-query testable). Fix a finite
set ¥ with |X| > 2. Any hereditary ordered graph property over 3 is constant-query testable.
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To prove Theorem 2.5, we establish an order-preserving induced graph removal lemma, which

holds for finite and infinite families of ordered graphs. This is a generalization of Theorem 2.2.

Theorem 2.6 (Infinite ordered graph removal lemma). Fiz a finite set ¥ with |X| > 2. For
any (finite or infinite) family F of ordered graphs F : ([nzp]) — X and any € > 0 there exist
q = qo(F,e) and 6 = §(F,e) > 0, such that any ordered graph G : ([g]) — X that is e-far from

F-freeness contains at least on? induced copies of some graph F € F on q < qo vertices.
An analogue of Theorem 2.5 for matrices is also proved.

Theorem 2.7 (Hereditary properties of ordered matrices are constant-query testable). Fiz a finite

set ¥ with |X| > 2. Any hereditary (ordered) matrixz property over ¥ is constant-query testable.

As in the case of ordered graphs, to prove Theorem 2.7 we establish the following ordered matrix
removal lemma, which holds for finite and infinite families of matrices, and settles a generalized

form of Conjecture 2.4.

Theorem 2.8 (Infinite ordered matrix removal lemma). Fiz a finite set ¥ with |X| > 2. For any
(finite or infinite) family F of ordered matrices over ¥ and any € > 0 there exist gy = qo(F,e) >0
and § = 0(F,e) > 0, such that any ordered matriz over ¥ that is e-far from F-freeness contains at

least on9t7 copies of some q x ¢ matriz F € F, where q,¢ < qo.

Actually, the proof of Theorem 2.8 is almost identical to that of Theorem 2.6, so we only describe
what modifications are needed to make the proof of Theorem 2.6 also work here, for the case of
square matrices. However, all proofs can be adapted to the non-square case as well. An outline for
the proof of the graph case is given in Section 2.2, and all of the sections after it are dedicated to
the full proof. The needed modifications for the matrix case appear in Section 2.6.3.

To the best of our knowledge, Theorems 2.5 and 2.7 are the first known testing results of
this type for ordered two-dimensional structures, and Theorems 2.6 and 2.8 are the first known
order-preserving removal lemmas for two-dimensional structures.

The author and Fischer [24] showed that for any property P of ordered graphs and matrices
which is constant-query testable using a canonical test, which picks uniformly at random vertices
and queries the subgraph (or submatrix) induced over these vertices, one can also tolerantly test
P, or equivalently, estimate with probability 2/3 the distance of the input to P, with a constant

number of queries. That is, we have the following corollary.

Corollary 2.9 (see also [24]). Any hereditary property P of ordered graphs and matrices is tolerantly
testable with a constant number of queries. That is, for any 0 < a < 1, the property of a-closeness

to P is constant-query testable.

It is interesting to note that some properties previously investigated in the literature, such

as monotonicity, k-monotonicity [41, 89], and forbidden-poset type properties in matrices [69], are
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hereditary (as all of them can be characterized by a finite set of forbidden submatrices), so Theorem
2.7 gives a new proof that these properties, and many of their natural extensions, are constant-
query testable. Naturally, our general tests are much less efficient than the tests specifically tailored
for each of these properties (in terms of dependence of the underlying constants on the parameters
of the problem), but the advantage of our result is its generality, that is, the fact that it applies
to any hereditary property. Thus, for example, for any fixed ordered graph H and any integer k,
the property that an ordered graph G' admits a k-edge coloring with no monochromatic (ordered)
induced copy of H is constant-query testable. As mentioned above, Ramsey properties of this type
have been considered in the combinatorics literature, see [57] and the references therein. Another
family of examples includes properties of (integer) intervals on the line. Any interval can be encoded
by an edge connecting its two endpoints, where the order on the vertices (the endpoints) is the
usual order on the real line. A specific example of a hereditary property is that the given set of
intervals is closed under intersection. The forbidden structure is a set of 4 vertices i < j < k < I

where ik and jl are edges (representing intervals) whereas jk is a non-edge.

Finally, there are various examples of unordered hereditary graph properties that have simple
representations using a small finite forbidden family of ordered subgraphs, while in the unordered
representation, the forbidden family is infinite. Some examples of such properties are bipartiteness,
being a chordal graph, and being a strongly chordal graph [39, 59]. For such properties, when
the input graph is supplied with the “right” ordering of the vertices, one can derive the strong
testability using the version of Theorem 2.6 for finite families of forbidden ordered subgraphs — see

Theorem 2.34 below — instead of using the infinite unordered version, Theorem 2.2.

Related and Subsequent results

Several additional results exploring the landscape of property testing in ordered structures have been
established by the author and multiple coauthors. In [6], Alon and the author prove several removal
lemma type results for ordered and partially ordered binary matrices, in which the dependence
between the parameters in the removal lemma is polynomial (rather than tower-type or worse as
is inherent when using Szemerédi regularity; see discussion below). The results there rely on the
efficient regularity lemma for binary matrices [8], and extend the (unordered) testability results
from the same paper. In [24], the author and Fischer study regularity-based transformations of
constant-query tests to constant-query tolerant tests in ordered structures, thereby generalizing
well-known results in the unordered context [9, 70]. In [25], the author, Fischer, Levi and Yoshida
develop a limit object for ordered graphs and matrices, the orderon, also discussing implications
for property testing. One such implication is an analytical proof of the ordered graph (and matrix)

removal lemma presented here.
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Discussion and open questions

Several possible directions for future research follow from the results.

Dependence between the parameters of the ordered removal lemmas Our proofs rely
heavily on strong variants of the graph regularity lemma. Regularity-based proofs generally have
a notoriously bad dependence between the parameters of the problem. In the notation of Theorem
2.6, for a fixed finite family F of forbidden ordered subgraphs, 6! is generally very large in terms
of 7!, meaning that the number of queries required for the corresponding test for such properties
is very large in terms of e~!'. Indeed, the original Szemerédi regularity lemma imposes a tower-type
dependence between these parameters [75, 88, 104], while the variant we use is at least as strong
(and at least as expensive) as the strong regularity lemma [7], which is known to have a wowzer
(tower of towers) type dependence between its parameters [55, 93]. Note that for infinite families
F the dependence between the parameters may be arbitrarily bad [11].

In a breakthrough result of Fox [73], the first known proof for the (unordered) graph removal
lemma that does not use the regularity lemma is given. However, the dependence between the
parameters there is still of a tower type. In any case, it will be interesting to try to obtain a proof

for the ordered case, that does not go through the strong regularity needed in our proof.

Better dependence for specific properties As discussed above, for ordered binary matrices
there is an efficient conditional regularity lemma [8], in which the dependence of 6=! on e ! is
polynomial. It will be interesting to try to combine the ideas from our proof with this binary
matrix regularity lemma, to obtain a removal lemma for finite families of ordered binary matrices
with better dependence between the parameters. Ideally, one hopes for a removal lemma with
polynomial dependence, but even obtaining such a lemma with, say, exponential dependence will
be interesting. More generally, it will be interesting to find large families of hereditary ordered
graph or matrix properties that have more efficient tests than those obtained from our results. See,

e.g., [79] for recent results of this type for unordered graph properties.

Characterization of constant-query testable ordered properties For unordered graphs,
Alon and Shapira [12] showed that a property is constant-query testable using an oblivious one-
sided test, which is a test whose behavior is independent of the size of the input, if and only if
the property is (almost) hereditary. It will be interesting to obtain similar characterizations in the
ordered case. The work of the author and Fischer [24] provides such a characterization for two-
sided error testability for earthmover resilient properties, which roughly speaking are all properties
for which a slight change in the order of the base elements (i.e., vertices in a graph, or rows and
columns in a matrix) does not substantially change the distance from the property. We believe that
similarly to the unordered case, being testable with one-sided-error by a canonical test, that picks

a random induced substructure and queries it, is roughly equivalent among earthmover resilient
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properties to being hereditary. Note that here, unlike the unordered setting, the restriction to
canonical tests is essential; in the third part of this thesis we consider local properties that are not

testable efficiently by a canonical test, but have very efficient locality-based tests.

Generalization to ordered hypergraphs and hypermatrices It will be interesting to ob-
tain similar removal lemmas (and consequently, testing results) for the high-dimensional analogues
of ordered graphs and matrices, namely ordered k-uniform hypergraphs and k-dimensional hyper-

matrices. Such results were proved for unordered hypergraphs [106, 118, 132].

2.2 QOutline

A proof of a graph removal lemma typically goes along the following lines: First, the vertex set of
the graph is partitioned into a “constant” (not depending on the input graph size itself) number of
parts, and a corresponding reqularity scheme is found. The regularity scheme essentially allows that
instead of considering the original graph, one can consider a very simplified picture of a constant size
structure approximately representing the graph. On one hand, the structure has to approximate
the original graph in the sense that we can “clean” the graph, changing only a small fraction of the
edges, so that the new graph will not contain anything not already “predicted” by the representing
structure. On the other hand, the structure has to be “truthful”, in the sense that everything
predicted by it in fact already exists in the graph.

In the simplest case, just a regular partition given by the original Szemerédi Lemma would
suffice. More complex cases, like [7, 12], require a more elaborate regularity scheme. In our case,
Section 2.5 provides a regularity scheme that addresses both edge configuration and vertex order,
combining a graph regularity scheme with a scheme for strings.

Given a regularity scheme, we have to provide the graph cleaning procedure, as well as prove that
if the cleaned graph still contains a forbidden subgraph, then the original graph already contains
a structure containing many such graphs (this will consist of some vertex sets referenced in the
regularity scheme). In Section 2.5.3 we show how to use the scheme to prove the removal lemma
and the testability theorem for the case of a finite family F of forbidden subgraphs, while in Section
2.6 we show how to extend it for the case of a possibly infinite family F. The latter section also
contains a formal definition of what it means for the regularity scheme to predict the existence of
a forbidden subgraph, while for the finite case it is enough to keep it implicit.

To extract the regularity scheme we need two technical aids. One of which, in Section 2.4.2,
is just a rounding lemma that allows us to properly use integer quantities to approximate real
ones. While in many works the question of dealing with issues related to the divisibility of the
number of vertices is just hand-waved away, the situation here is complex enough to merit a formal
explanation of how rounding works.

In Section 2.4.1 we develop a Ramsey-type theorem that we believe to be interesting in its own
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right. The use of Ramsey-type theorems is prevalent in nearly all works dealing with regularity
schemes, as a way to allow us to concentrate only on “well-behaved” structures in the scheme when
we are about to clean the graph. Because of the extra complication of dealing with vertex-ordered
graphs, we cannot just find Ramsey-type instances separately in different parts of the regularity
scheme. Instead, we need to find the well-behaved structure “all at once”, and furthermore assure
that we avoid enough of the “undesirable” parts where the regularity scheme does not reflect the
graph. The fraction of undesirable features, while not large, must not depend on any parameters
apart from the original distance parameter € (and in particular must not depend on the size of the
regularity scheme), which requires us to develop the new Ramsey-type theorem.

Roughly speaking, the theorem states the following: If we have a k-partite edge-colored graph
with sufficiently many vertices in each part, then we can find a subgraph where the edges between
every two parts are of a single color (determined by the identity of the two parts). However, we do
it in a way that satisfies another requirement: If additionally the original graph is supplied with a
set of “undesirable” edges comprising an « fraction of the total number of edges, then the subgraph
we find will include not more than an (1 + n)a fraction of the undesirable edges, for an 7 as small

as we would like (in our application n = 1 will suffice).

2.2.1 Finding a Regularity Scheme

To prove the removal lemma we need a regularity scheme, that is a sequence of vertex sets whose
“interaction” with the graph edges, and in our case also the graph vertex order, allows us to carry
a cleaning procedure using combinatorial lemmas.

Historically, in the case of properties like triangle-freeness in ordinary graphs, a regular equipar-
tition served well enough as a regularity scheme. One needs then to just remove all edges that are
outside the reach of regularity, such as edges between the sets that do not form regular pairs. When
moving on to more general properties of graphs, this is not enough. We need a robust partition
(see [70]) instead of just a regular one, and then we can find a subset in each of the partition sets so
that these “representative” sets will all form regular pairs. This allows us to decide what to do with
problem pairs, e.g. whether they should become complete bipartite graphs or become edgeless (we
also need to decide what happens inside each partition set, but we skip this issue in the sketch).

For vertex ordered graphs, a single robust partition will not do. The reason is that even if we
find induced subgraphs using sets of this partition, there will be no guarantees about the vertex
order in these subgraphs. The reason is that the sets of the robust partition could interact in
complex ways with regards to the vertex order. Ideally we would like every pair of vertex sets to
appear in one of the following two possible ways: Either one is completely before the other, or the
two are completely “interwoven”.

To interact with the vertex order, we consider the robust partition along with a secondary
interval partition. If we consider what happens between two intervals, then all vertices in one of

the intervals will be before all vertices in the other one. This suggests that further dividing a robust

22



partition according to intervals is a good idea. However, we also need that inside each interval,
the relevant robust partition sets will be completely interwoven. In more explicit terms, we will
consider what happens when we intersect them with intervals of a refinement of the original interval
partition. If these intersections all have the “correct” sizes in relation of the original interval (i.e., a
set that intersects an interval also intersects all relevant sub-intervals with sufficient vertex count),
then we will have the “every possible order” guarantee.

Section 2.5 is dedicated to the formulation and existence proof of a regularity scheme suitable for
ordered graphs. In Section 2.5.1 we present the concept of approximating partitions, showing several
useful properties of them. Importantly, the notion of a robust partition is somewhat preserved when
moving to a partition approximating it.

In Section 2.5.2 we develop the lemma that gives us the required scheme. Roughly speaking, it

follows the following steps.

e We find a base partition P of the graph G, robust enough with regards to the graph edge
colors, so as to ensure that it remains robust even after refining it to make it fit into a

secondary interval partition.

e We consider an interval partition J of the vertex set V' of G, that is robust with respect to P.
That is, if we partition each interval of J into a number of smaller intervals (thus obtaining
a refinement J'), most of the smaller intervals will contain about the same ratio of members

of each set of P as their corresponding bigger intervals.

e Now we consider what happens if we construct a partition resulting from taking the intersec-
tions of the members of P with members of J’. In an ideal world, if a set of P intersects an
interval of J, then it would intersect “nicely” also the intervals of J’ that are contained in
that interval. However, this is only mostly true. Also, this “partition by intersections” will

usually not be an equipartition.

o We now modify a bit both P and J, to get Q and I that behave like the ideal picture, and are
close enough to P and J. Essentially we move vertices around in P to make the intersections
with the intervals in J’ have about the same size inside each interval of J. We also modify
the intersection set sizes (which also affects J a little) so they will all be near multiples of a
common value (on the order of n). This is so we can divide them further into an equipartition
that refines both the robust graph partition and the interval partition. The rounding Lemma
2.25 helps us here.

The above process generates the following scheme. @ is the modified base equipartition, and its
size (i.e. number of parts) is denoted by k. I is the modified “bigger intervals” equipartition, and
its size is denoted by m. We are allowed to require in advance that m will be large enough (that is,

to have m bigger than a predetermined constant mg). There is an equipartition @’ of size mt which
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refines both @ and I. That is, each part of @)’ is fully contained in a part of @ and a part of I,
and so each part of @ contains exactly mt/k parts of )'. Moreover, there is the “smaller intervals”
equipartition I’ which refines I, and has size mb where b = r(m,t) for a two-variable function r
that we are allowed to choose in advance (r is eventually chosen according to the Ramsey-type
arguments needed in the proof). Each part of I contains exactly b parts of I’. Finally, there is a
“perfect” equipartition Q" which refines @’ and I’ and has size mbt, such that inside any bigger
interval from I, the intersection of each part of @ with each smaller interval from I’ consists of
exactly one part of Q”. Additionally, Q' can be taken to be very robust, where we are allowed to
choose the robustness parameters in advance.

We are guaranteed that the numbers m and ¢ are bounded in terms of the above function r, the
robustness parameters, and mg for which we required that m > mg. These bounds do not depend

on the size of the input graph. See Lemma 2.33 for more details.

2.2.2 Proving a Finite Removal Lemma

Consider an ordered colored graph G : ([Z]) — 3, and consider a regularity scheme consisting of
equipartitions @, I, Q', I’, Q" for G as described above.
We start by observing that if Q" is robust enough, then there is a tuple W of “representatives”

for Q”, satisfying the following conditions.

e For each part of Q" there is exactly one representative, which is a subset of this part.

e Each representative is not too small: it is of order n (where the constants here may depend

on all other parameters discussed above, but not on the input size n).
e All pairs of representatives are very regular (in the standard Szemerédi regularity sense).

e The densities of the colors from Y between pairs of representatives are usually similar to the
densities of those colors between the pairs of parts of Q” containing them. Here the density

of a color o € ¥ between vertex sets A and B is the fraction of g-colored edges in A x B.

Actually, the idea of using representatives, as presented above, was first developed in [7]. Note
that each part of Q' contains exactly b representatives (since it contains b parts from Q") and each
small interval of I’ contains exactly ¢ representatives.

Now if @’ is robust enough then the above representatives for Q" also represent @’ in the
following sense: Densities of colors between pairs of representatives are usually similar to the
densities of those colors between the pairs of parts of Q' containing them.

Consider a colored graph H whose vertices are the small intervals of I’, where the “color” of the
edge between two vertices (i.e. small intervals) is the ¢t x ¢ “density matrix” described as follows: For
any pair of representatives, one from each small interval, there is an entry in the density matrix.
This entry is the set of all colors from ¥ that are dense enough between these two representatives,

i.e., all colors whose density between these representatives is above some threshold.
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An edge between two vertices of H is considered undesirable if the density matrix between
these intervals differs significantly from a density matrix of the large intervals from I containing
them. If Q' is robust enough, then most density matrices for pairs of small intervals are similar
to the density matrices of the pairs of large intervals containing them. Therefore, the number of
undesirables in H is small in this case.

Consider now H as an m-partite graph, where each part consists of all of the vertices (small
intervals) of H that are contained in a certain large interval from I. We apply the undesirability-
preserving Ramsey on H, and then a standard multicolored Ramsey within each part, to obtain an

induced subgraph D of H with the following properties.

e D has exactly dr vertices (small intervals) inside each part of H, where dr is the maximum

number of vertices in a graph from the forbidden family F.

e For any pair of parts of H, all D-edges between these parts have the same “color”, i.e. the

same density matrix.
e For any part of H, all D-edges inside this part have the same “color”.
e The fraction of undesirables among the edges of D is small.

Finally we wish to “clean” the original graph G as dictated by D. For any pair @}, Q) of (not
necessarily distinct) parts from @', let I, I5 be the large intervals from I’ containing them, and
consider the density matrix that is common to all D-edges between I; and Is. In this matrix there
is an entry dedicated to the pair Q}, @5, which we refer to as the set of colors from ¥ that are
“allowed” for this pair. The cleaning of G is done as follows: For every u € Q] and v € @5, if the
original color of uv in G is allowed, then we do not recolor uv. Otherwise, we change the color of
uv to one of the allowed colors.

It can be shown that if D does not contain many undesirables, then the cleaning does not
change the colors of many edges in GG. Therefore, if initially G is e-far from F-freeness, then there
exists an induced copy of a graph F' € F in G with [ < dx vertices after the cleaning. Considering
our cleaning method, it can then be shown that there exist representatives Rj,..., R; with the
following properties. For any 4, all vertices of R; come before all vertices of R;;1 in the ordering
of the vertices, and for any i < j, the color of F(ij) has high density in R; x R;. Recalling that
all pairs of representatives are very regular, a well-known lemma implies that the representatives

Ry, ..., R; span many copies of F', as desired.

From finite to infinite removal lemma

After the finite removal lemma is established, adapting the proof to the infinite case is surprisingly
not difficult. The only problem of the finite proof is that we required D to have exactly dr vertices

in each large interval, where dr is the maximal number of vertices of a graph in /. This requirement
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does not make sense when F is infinite. Instead we show that there is a function dz(m,t) that
“plays the role” of dx in the infinite case.

dz(m,t) is roughly defined as follows: We consider the (finite) collection C(m,t) of all colored
graphs with loops that have exactly m vertices, where the set of possible colors is the same as that
of H (so the number of possible colors depends only on |X| and ¢). We take dz(m,t) to be the
smallest number that guarantees the following. If a graph C € C(m,t) exhibits (in some sense) a
graph from F, then C also exhibits a graph from F with no more than dz(m,t) vertices.

The rest of the proof follows as in the finite case, replacing any occurrence of dx in the proof
with dz(m,t). Here, if G contains a copy of a graph from F after the cleaning, then there is a
set of no more than dz(m,t) different representatives that are very regular in pairs and have the
“right” densities with respect to some F' € F with at most dz(m,t) vertices, so we are done as in

the finite case.

From ordered graphs to ordered matrices To prove Theorem 2.8 for square matrices, we
reduce the problem to a graph setting. Suppose that M : U x V — ¥ is a matrix, and add an
additional color g to Y. All edges between U and V will have the original colors from 3, and
edges inside U and inside V' will have the new color og. Note that we are not allowed to change
colors to or from the color og, as it actually signals “no edge”. The proof now follows from the
proof for graphs: We can ask the partition I into large intervals to “respect the middle”, so all
parts of I are either fully contained in U or in V. Moreover, colors of edges inside U or inside V' are
not modified during the cleaning step, and edges between U and V are not recolored to g, since
this color does not appear at all between the relevant representatives (and in particular, does not
appear with high density).

To adapt the proof of Theorem 2.8 for non-square matrices, we need the divisibility condition
to be slightly different than respecting the middle. In the case that m = o(n), we need to construct
two separate “large intervals” equipartitions, one for the rows and one for the columns, instead of

one such equipartition I as in the graph case. The rest of the proof does not change.

2.3 Preliminaries and Definitions

In general, we may and will assume whenever needed throughout the chapter that n is large enough
with respect to all relevant parameters. We generally denote “small” parameters and functions
(whose values are always positive but can be arbitrarily close to zero) by small Greek letters!,
and “large” parameters and functions (whose values are always finite natural numbers but can be
arbitrarily large) by Latin letters. We assume that all parameters in all statements of the lemmas

are monotone in the “natural” direction, as in the following examples: T(a,b) < T(o/,V') for

'The only exception is A, which will denote general real numbers, and £ which will denote their rounding.
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a>ad,b<V,and vy(c,d) < v(d,d) for ¢ > ¢, 5 < ¢'. We also assume that all “small” parameters
are smaller than one, and all “large” parameters are larger than one.

We also assume that all functions are “bounded by their parameters”, for example v(«, k) < «
and T'(a, k) > k. These definitions extend naturally to any set of parameters, and are easily seen

to be without loss of generality as long as we do not try to optimize bounds.

Colored graphs and charts A X-colored graph G = (V,cq) is defined by a totally ordered

\%4
2

edges are colored by elements of ¥. The standard notion of an (ordered) graph is equivalent to a
{0, 1}-colored graph. A X-colored graph with loops G' = (V,cq) is defined by a totally ordered set
V and a function cgr : (‘2/) UV — X. We identify the notation cg/(vv) with cgr(v) for any v € V.
With a slight abuse of notation, we denote by Uy x Us = {{u1,u2} : uy € Uy, ug € Ua} the set
of edges between two disjoint vertex sets Uy and Us. A (k,X)-chart C = (V1,..., Vi, cc) is defined
by k disjoint vertex sets Vi,...,V; and a function c¢ : Ec — X, where E¢ = U1§i<j§k U; x Uj.

set of vertices V' and a function cg : ( ) — Y. That is, G is a complete ordered graph whose

In other words, it is an edge-colored complete k-partite graph. For C and G as above, we say
that C' is a partition of G if V = Ule Vi and cg(e) = co(e) for any edge e € E¢. Moreover, C
is equitable if ||V;| — V|| < 1 for any 1 < 7,5 < k; an equitable partition is sometimes called an
equipartition. The size |C| of the partition C is the number of parts in it. For a partition C' as above,
a (k’,X)-chart C” which is also a partition of G is said to be a G-refinement of C if we can write
C'"= Vi, .., Vijy, o, Vi, -, Vigj» cov) where V; = U{’:l Vii. Note that cg(e) = co(e) = cor(e)
for any edge e € E¢c. We sometimes omit the coloring from the description of a partition when
it is clear from the context (as the coloring is determined by the partition of the vertices and the
coloring of the graph). For two disjoint sets of vertices U, W and a coloring ¢ : U x W — X, we
say that the density of o € ¥ in (U, W, ¢) is d, (U, W, ¢c) = |(U x W) N c Y (o)|/|U||W|. the squared
density is denoted by d2(U, W, ¢). The index of (U, W,c) is

ind(U, W, ¢) = Y d2(U,W,c).
oED
Note that 0 < ind(U, V,c¢) < 1 always holds. When the coloring c is clear from context, we usually
simply write d,(U, V') for density and ind(U, V) for index. For a chart C' as above we define the

index of C as

. Vil|Vir|.
lIld(C) = Z | |L|/| ‘md(V;, Vvi’a c [V;XV;—/)
1<i<i' <k ( 2 )

where V' = Ule V;. By the Cauchy-Schwarz inequality, for any two partitions C, C’ of G where

C' is a G-refinement of C' we have
0 <ind(C) < ind(C’) < 1. (2.1)

For a function f : N — N and a constant v > 0, we say that an equipartition C of size k
is (f,y)-robust if there exists no refining equipartition C’ of C' of size at most f(k) for which
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ind(C’) > ind(C) + 7. The following observation states that for any colored graph G and any
equipartition C' of G, there exists an (f,~)-robust equipartition C’ refining C'. The first explicit

definition of robustness was given in [70].

Observation 2.10 (Robust partitioning of colored graphs [70]). For any integer k > 0, function
f N = N and real v > 0 there exists T = Ta10(k, f,7y) such that for any equipartition C' of a
colored graph G with |C| = k, there ezists an (f,~)-robust equipartition C' = C4,,(C, f,7) that
refines C, where |C'| <T.

Proof. Initially pick C’ = C. Now, as long as C’ is not (f,~)-robust, let &’ denote the number of
parts of C’; we may replace C’ by a G-refinement C” of it with at most f(k’) parts and ind(C”) >
ind(C") + 7. This process stops after at most 1/~ iterations, by inequality (2.1). O

The definition of robustness immediately implies the following.

Observation 2.11. Let P = (V4,...,V}) be an equipartition of a ¥-colored graph G = (V,¢), and
suppose that P is (f o g,7)-robust for two functions f,g : N — N and v > 0. Then any equitable
refinement of P with no more than g(k) parts is (f,~y)-robust.

The notion of robustness is stronger than the more commonly used notion of regularity. For a
¥-colored graph G = (V, ¢) and an equipartition P = (Vi,...,V}) of G, a pair (V;,V}) is e-regular if
|do(Vi, Vi) —ds(V], V)| < € for any o € X and V) C V;, V] C V; that satisfy [V/| > e[V;[,|V]| > ¢|Vj].
P is an e-reqular partition if all but at most 5( ) of the pairs (V;,V;) are e-regular. The following
lemma states that robust partitions are also regular; a lemma like it is implicit in the ideas of the
original proof of [131]. The original was formulated only for non-colored graphs (X = {0,1}), but

the extension to colored graphs is not hard (and was also done in prior work).

Lemma 2.12 ([131], see also [70]). For any € > 0 there exist f = f2(§1)2 : N = Nand § =
d2.12(|2],€) > 0 such that any (f,d)-robust equipartition P of a ¥-colored graph G is also e-regular.

The next lemma was first formulated (with different notation and without the extension to
general X) in [7], but in a sense the basic idea was already used in implicitly proving Lemma 2.12
n [131]. It will be useful for us later.

Lemma 2.13 ([7], see also [70]). For any € > 0 there exists § = 02.13(|X],€) > 0, so that for
every [ : N = N, any (f,9)-robust equipartition P = (V1,..., Vi) of a X-colored graph G, and
any equitable refinement P’ = (Vi1,...,Vip, ..., Vi1, ..., Vi) of P where kb < f(k), choosing the
indexes so that V; = Uf«:1 Vir for any i € [k], it holds that

( Z Z Z |d V;]v‘/z’] d (VuVu)lﬁs

0621 i'€[k] 5,5’ €[b]

Another lemma that will be useful later is the following. This is Lemma 3.2 in [7].
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Lemma 2.14 ([7]). For any n > 0 there exists a function 8 = f4,, : N = N, so that for
any integer | > 0 there exists k = k214(n,l) with the following property: If H = ([l],cy) and
Vi,..., Vi are disjoint vertex sets of G = (V,c), such that for any i < j, (V;,V;) is B(1)-regular and
dey iy (Vi, Vj) 2 m, then the number of induced H -copies in G with a vertex from V; playing the role
of vertex i of H is at least HHézl |Vil.

Strings and intervals Consider an ordered set V whose elements are v1 < ... < v,. A string S :
V — ¥ is a mapping from the ordered set V' to an alphabet X. An interval partition I = (I, ..., Ix)
of the string S : V — X is a partition V = Iy ... I} into consecutive substrings of S: That is, there
exist 0 = ap < ... < ag—1 < ar = n such that I; = S(vg,_,41)...5(vg,) for any 1 < i < k. [ is
equitable (or an interval equipartition) if a; — a;—1 € {|n/k|, [n/k]} for any 1 <1i < k. An interval
refinement I' of I is an interval partition of S such that any part of I’ is fully contained in a part
of I. The size |I| of an interval partition I is its number of parts.

Next we define notions of index and robustness that are suitable for strings and interval parti-
tions. Similar notions were established in [17, 65]. For a string S : V' — X, the density of o € X
in S is d,(S) = |S1(0)|/|S| where S71(c) = {v € V : S(v) = ¢}, and the squared density of o in
S is denoted by d2(S). The index of S is ind(S) = 3, oy, d2(S). Finally, the indez of an interval

partition I = (Iy,...,I) of S is
k

ind(I) =) "I‘/""ind(m.
i=1
As in the case of charts, for an interval equipartition I of a string S, we say that I is (f,~y)-robust
if any interval equipartition I’ of size at most f(k) that refines I satisfies ind(I') < ind(I) 4+~ (in
the other direction, ind(I) < ind(I") always holds). The following is an analogue of Observation

2.10, and its proof is essentially identical.

Observation 2.15 (Robust partitioning of intervals). For any integer k > 0, function f : N — N
and real v > 0 there exists T = Ty 15(k, f,7) such that any interval equipartition I of a string S
where |I| = k has an (f,v)-robust interval refinement I' = I} (I, f,7) consisting of at most T

intervals.
The next lemma is an analogue of Lemma 2.13 for strings, and its proof is similar.

Lemma 2.16. For any & > 0 there exists § = d2.16(|X|,€) > 0, so that for every f : N — N, any
(f, 8)-robust interval equipartition I = (I1,...,Ix) of a string S : V — X, and any equitable interval
refinement I' = (I11, ..., Iy, - -y Ig1, - ., Ixp) of T where kb < f(k), choosing the indezes so that
I = Uf,zl Iy for any i € [k], it holds that

% Z Z Z |do(1i5) — do(1;)] < e.

o€ iclk] jeb
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We finish by defining the string that a partition of an ordered set induces on that set. The

strings that we will consider in this chapter are of this type.

Definition 2.17 (String of a partition). For a partition P = (Vi,..., Vi) of an ordered set V', the
P-string Sp : V — [k] maps any v € V to the element i € [k] such that v € V;.

With slight abuse of notation, we will also use the notion of an interval partition in the context of
ordered graphs; here each interval will simply be a set of consecutive vertices (with no accompanying

function, in contrast to the case of strings).

2.4 Technical Aids

We develop here two tools that we will use for our proofs. The first tool is a Ramsey-type theorem
that we believe to be interesting in its own right. We will use it to find a “uniform” structure with
a global view on our graph. The second tool is a rounding lemma that allows us to evenly partition
graphs also when the number of sets does not divide the number of vertices, without hand-waving

away the divisibility issues (which might have been questionable in our context).

2.4.1 A Quantitative Ramsey-type Theorem

The multicolored Ramsey number Ram(s, k) is the minimum integer n so that in any coloring of
K,, with s colors there is a monochromatic copy of Kj. It is well known that this number exists
(i.e. is finite) for any s and k. For our purposes, we will also need a different Ramsey-type result,
that keeps track of “undesirable” edges, as described in the following subsection.

Given a k-partite X-chart, we would like to pick a given number of vertices from each partition
set, so that all edges between remaining vertices in each pair of sets are of the same color. However,
in our situation we also have a “quantitative” requirement: A portion of the edges is marked
as “undesirable”, and we require that in the chart induced on the picked vertices the ratio of
undesirable edges does not increase by much. Formally, we prove the following, which we state as

a theorem because we believe it may have uses beyond the use in this thesis.

Theorem 2.18. There exists a function Ro1s : NXxNxNx (0,1] = N, so that if G = (Vi,..., Vi, ¢)
is a k-partite 3-chart with n > Rpas(|X[, k,t, ) vertices in each class, and B C U, jepq(Vi %
Vj) is a set of “undesirable edges” of size at most 5(’5)712, then G contains an induced subchart

Hy13(G, B, t,a) = (Wy, ..., Wy, ¢ rU1§i<j§k(WiXWj)) with the following properties.
o |W;| =t for every 1 <i<k.
o ¢ [w,xw; is a constant function for every 1 <i < j <k.
o The size of BN (U< j<x(Wi X Wj)) is at most (1 + a)s(g)tQ.
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In our use, these “vertices” would actually be themselves sets of a robust partition of the original
graph, and “colors” will encode densities; an undesirable pair would have the “wrong” densities.
Also, in our use case the undesirability of an edge will be determined solely by its color and the
W; that its end vertices belong to, which means that for each 1 <7 < i’ < k the edge set W; x Wy
consist of either only desirable edges or only undesirable edges. When this happens, a later pick of
smaller sets W/ C W; will still preserve the ratio of undesirable edges (we will in fact perform such
a pick using the original Ramsey’s theorem inside each W;). The following corollary summarizes

our use of the theorem.

Definition 2.19. Given a k-partite X-chart G = (V1,..., Vi, ¢) and a set B C ;e (Vi x Vj), we
say that B is orderly if for every 1 <i < j <k there are noe € (V; xV;)NB and ¢ € (V; x V;)\ B
for which c(e) = c(€'). In other words, the “position” and color of an edge fully determines whether

it 15 in B.

Corollary 2.20. There exists a function Roog: N x N x N — N, so that if G = (Uf:1 Vi,c) is a
Y-colored graph with |V;| = n > Ra20(|X], k,t) for any i € [k] and V;NV; =0 for any i # j € [k],
and B C Ui<]-€[k](Vi x V) is an orderly set of “undesirable edges” of size at most 5(5)712, then G

contains an induced subgraph D satisfying the following.
e The vertex set of D is Ui‘:l U; where U; CV; and |U;| =t for any i € [k].
e For any i € [k], all edges inside U; have the same color.
e For any i < j € [k], all edges in U; x U; have the same color.
o Siciew BN (Ui x Uj)| < 2e(5)82.

Proof. Take R220(s, k,t) = Ra1s(s, k, Ram(s,t),1) (recall that Ram(s,¢) denotes the “traditional”
s-colored Ramsey function). By Theorem 2.18, there exists a chart H = (W1,..., W) with the

following properties.
o W; CV; and |W;| = Ram(t, |X|) for every i € [k].
e For any pair i < j € [k], all edges in W; x W; have the same color.
o icicw BN (Wi x Wy)| < 2¢(5) (Ram(t, |[]))°.

Observe that for any pair ¢ < j € [k], either W; x W; C B or (W; x W;) N B = 0, since all edges
in W; x W; have the same color and B is orderly. Therefore, the number of pairs 7 < j for which
(Wi x W;) N B # () is at most 25(’5). Now we apply the traditional Ramsey’s theorem inside each
W; to obtain a set U; C W, of size t such that all edges inside W; have the same color. Since
Yici BN (Ui x Uj)| < ZKJ';(Wiij)mB#@ |IBN(U; x Uj)| < 2€(§)t2, the proof follows. O
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Before moving to the proof of Theorem 2.18 itself, let us quickly note that a quantitative
counterpart for the traditional (not k-partite) graph case does not exist (indeed, Corollary 2.20 is

a way for us to circumvent such issues).

Proposition 2.21. For any a > 0, m, k, and large enough l, for infinitely many n there is a graph
G and a set of undesirable pairs B, so that G has n vertices, B consists of at most ﬁ(g) pairs,
G has no independent set of size I, and every clique of | vertices in G holds at least (% — a)(é)

members of B.

Proof. We construct G for any n that is a multiple of mk larger than lk. The graph G will be the
union of k vertex-disjoint cliques, each with n/k vertices. In particular, G contains no independent
set with [ vertices, and any clique with [ vertices must be fully contained in one of the cliques of G.

Now B will be fully contained in the edge-set of G, and will consist of the edge-set of mk vertex-
disjoint cliques with n/mk vertices each, so that each of the cliques of G' contains m of them. It is
now not hard to see that any clique with [ vertices in G will contain at least (% —aqp) (é)) members

of B, where lim;_,o, oy = 0. ]

Moving to the proof, the following is our main lemma. It essentially says that we can have
a probability distribution over “Ramsey-configurations” in our chart that has some approximate

uniformity properties.

Lemma 2.22. There exists a function Ra29 : Nx N xNx (0,1] = N, so that if G = (Vi,..., Vi, ¢)
is a k-partite ¥-chart with n > Ra2a(|X], k,t,0) wvertices in each class, then G contains a ran-
domized induced subchart Ho22(G,t,8) = (W1, ..., Wy, ¢ [U1<i<j<k(wiij)) satisfying the following

properties.
o FEither |W;| =t for every 1 < i < k, or the chart is empty (W; =0 for every i).
e c[w,xw; is a constant function for every 1 <i < j <k (with probability 1).
o For every 1 <i <k, every v € V; will be in W; with probability at most t/n.

o foreveryl <i<j <k, everyv € V; and every w € Vj, the probability for both v € W; and
w € W; to hold is bounded by (t/n)?.

o The probability that the chart is empty is at most §.
Before we prove this lemma, we show how it implies Theorem 2.18.

Proof of Theorem 2.18. We set Rs1s(a,k,t,a) = Ro9o(a,k,t,«a/3). Given the k-partite 3-chart
G, we take the randomized subchart H = Hg99(G,t,/3) = (W1,..., Wy, ¢ [U1§i<j§k(WiXWj))’ and
prove that with positive probability it is the required subchart.

Let B' = BN (Uj<icj<x Wi x W;) denote the set of undesirable pairs that are contained in
H. By the probability bound on pair containment and by the linearity of expectation, E[|B’|] <

32



(t/n)?|B| < 5(’5)752. Therefore, the probability for |B’| to be larger than (1 + a)g(g)t2 is bounded
by 14%& < 1— /2. Therefore, with positive probability, both | B’| is not too large and H is not the
empty chart. Such an H is the desired subchart. O

To prove Lemma 2.22 we shall make good use of the following near-trivial observation.

Observation 2.23. There exists a function mao3 : N x N x (0,1] — N, such that if A is a set of
size at least moos(k,t,8) and A = (Ay,...,Ax) is a partition of A to k sets, then there exists a
randomized subset B = B a3(A,t,0) satisfying the following properties.

e Fither |B| =t or B = .

e B is fully contained in a single A;.

e For every a € A, the probability for a € B is at most t/|A|.
e The probability for B = ) is at most §.

Proof. To choose the randomized subset B, first choose a random index I where Pr[I = i| = | A;|/|A|
for all 1 <i < k. Next, if |A7| < ¢ then set B = (), and otherwise set B to be a subset of size exactly
t of Ay, chosen uniformly at random from all (lﬁfl) possibilities. Setting mo3(k,t,d) = tk/0, it is
not hard to see that all properties for the random set B indeed hold. O

Proof of Lemma 2.22. The proof is done by induction over k. The base case k = 1 is easy — set
Ro22(|X],1,¢,0) = t, and let W be a uniformly random subset of size ¢ of V.

For the induction step from k£ — 1 to k, we set Ra22(|X], k,t,0) = maa23(|X|%, 7, k%Llé)’ where
s = maa3(|X)F 1, ¢, k%rlé) and r = Rooo(|2], k — 1,¢, k%rlé) We set W1, ..., W} to be the result of
the following random process.

First, we set V/ C V; to be a uniformly random subset of size exactly s. Then, for every
2 <i <k, weset V/ CV; to be the random set Bsa3(V;,T, k%rlé), where V; is the partition of V;
obtained by classifying every v € V; according to the colors <C("w7"U)>weV1’a i.e., two vertices in V;
are in the same partition set if all their pairs with vertices from V/ have the same colors.

If any of the V/ came out empty, we set all W; to () and terminate the algorithm (this occurs
with probability at most %5), and otherwise we continue. Note now, in particular, that for every
w € V1 and v € V; the probability for both w € V{ and v € V;/ to hold is bounded by (s/n)(r/n).
This is since the probability guarantees of Observation 2.23 hold for any possible value of V. Also,
since each V/ was independently drawn, for v € V; and w € V; (where 1 < ¢ < j < k) the probability
for both v € V/ and w € V] to hold is bounded by (r/n)?.

We now let H' denote the (k — 1)-partite 3-chart induced by V3, ..., V), and use the induction
hypothesis to (randomly) set Wa, ..., W} as the corresponding vertex sets of Ha20(H',t, k%rlé) As
before, if we receive empty sets then we also set W7 = () and terminate. Note that for 1 < i < k

and v € V/, the probability for v to be in W; is bounded by t/r. Hence, for v € V;, the probability
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for v € W; to hold is bounded by (r/n)(t/r) = t/n. Similarly, for 1 < i < j <k, for every v € V;
and w € V; the probability for both v € W; and w € W, to hold is bounded by (t/n)?. Also by
similar considerations, for v € V4 and w € V;, the probability for both v € V{ and w € W; to hold
is bounded by (s/n)(t/n).

Finally, we set W7 to be the random set Bs 23(V', ¢, k%rlé), where V' is the partition of V] obtained
by classifying each v € V{ by the colors (c¢(v,w))yew,. Note that ¢(v, w) in that expression depends
only on v and the index ¢ for which w € W}, because of how we chose each V; above. In particular,
after the choice of Wy, the function ¢ [, xw, is constant for each 1 < i < k. Again, if we got an
empty set for Wi, we set all Wa, ..., W) to be empty as well. By similar considerations as in the
preceding steps, also here, for any v € V; the probability of v € Wj is bounded by t/n, and for
w € V; where 1 < i < k, the probability of both v € W; and w € W; is bounded by (t/n)?.

The probability of obtaining empty sets in any of the steps is bounded by ¢ by a union bound,

and all other properties of the random sets Wy, ..., W} have already been proven above. 0

2.4.2 Multipartitions and Rounding

The following is a mechanism to handle “with one stroke” rounding issues throughout the chapter.

Definition 2.24 (Multipartitions). A multipartition of a set L is a family M of subsets of L,
that in particular includes L and all the singletons {i} for i € L, and furthermore every two sets

A, B € M are either disjoint or one is contained in the other.

To get an idea, an object that can be modeled as a multipartition is a partition of L (the
multipartition would contain the partition sets, along with L itself and all singleton sets {i}), but
also other objects, such as a partition and its refinement together, can be modeled as multipartitions.

Here is the main lemma.

Lemma 2.25 (rounding feasibility). If M and N are two multipartitions of the same set L, and
Ai € R is a real value attached to every i € L, then there exist integer values ¢; € 7Z attached to

1 € L, satisfying the following.
o Ui e {|Nil],[Ail} for everyie L.
o > icali € {2 icaNils [2icaril} for every A€ M and for every A€ N.
o Yierli € {2 ier Mils [Xier Al

Proof. Note that the middle item implies the other two (since M and N in particular include L
and all singleton sets {i} for i € L). We define the following problem of solving a flow network

with minimal and maximal constraints (for an exposition of flow networks see [136]).
e The node set of the flow network is {us: A€ M}U{wa: A€ N}
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e The start node is u;, and the target node is wry.

e For every A, B € M, so that A C B and there is no C' € M for which A C C' C B, we put an

edge from up to ug with minimum flow [» ;. 4 Ai] and maximum flow [ . 4 Ai].

e For every A, B € N, so that A C B and there is no C' € N for which A C C' C B, we put an

edge from w4 to wp with minimum flow [» ;. 4 Ai] and maximum flow [ . 4 Ai].

e For every i € L we put an edge from u; to w; with minimum flow |);| and maximum flow

[Ai]-
e We require the total flow of the network to be between [ ;.; Ai| and [>°,.; Ail.

This flow network has a real-valued solution by assigning \; flow to each edge of the type u;, w;,
and then assigning the corresponding sums to all other network edges. Hence (since all constraints
are integer-valued), the flow network has an integer-valued solution as well (see, e.g., the analysis
of Lawler’s algorithm in [136], page 602). Fixing such a solution, and setting ¢; to be the flow in
the edge w;, w; for every @ € L, completes the proof. O

An example of using the lemma is when we want to round the values in a 2-dimensional matrix
so that the row sums and column sums are also rounded versions of the original sums (and in
particular equal to the original sums if they happen to be integers). In our use the resulting integer
values would be set sizes for an equipartition, that in turn refines other partitions with set size
requirements.

We also note here that the statement of this lemma is false when we are presented with three
multipartitions. Take for example the 3-dimensional matrix of size 2 x 2 x 2, where A111 = A1gp =
010 = Aogo1 = %, with all other A values being zero. Also for each of the three dimensions take the
partition into two axes-parallel planes. The values on every set of every partition sum up to 1, and

yet there are no corresponding 41 € {[Aiji], [Aijr|} satisfying these constraints.

2.5 A Regularity Scheme for Ordered Graphs

2.5.1 The Approximating Partition Framework

Definition 2.26 (d-approximating partitions). Let P = (Vi,..., V) and Q = (Uy,...,U;) be
partitions of a set V of size n. We say that Q) is a d-approximation of P, or equivalently, that
P and Q are 6-close, if there exists T C V with |T| < dn such that V; \ T = U; \ T for any
1 <4 < max{k,l}, where fori > k we define V; = ¢, and similarly U; = ¢ for i > 1.

Lemma 2.27. For any € > 0 there exists § = d2.27() > 0 such that any two d-close partitions P
and Q of (the vertex set of ) a colored graph G = (V,¢) satisfy |ind(P) — ind(Q)| < e.
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Proof. Let P = (Vi,...,V;) and @Q = (Uy,...,U;) be d-close partitions of G, where we assume
w.lo.g. that kK < [. For any 1 < i < k let W; = V; NU;, and observe that Zle Wil > (1 —0)n.
we say that i is bad if [W;| < (1 — v/§) min{|V;|,|U;|} and good otherwise. Then ;.4 |Vi| < Vén
and 3, 141U < v/dn. When i and j are both good, we have

ind(V;, V;) — ind(W;, W;)| < ) [(d2(Vi, Vy) — d2 (Wi, W))| <23 |do(Vi, V3) = do (W3, W)
oED gEY

VillVil ™ (o) N (Vi x Vi) \ (Wi x W)\
< 22 ( Vi, V) <|Wz‘HWj\ 1) + WA ) = 0(V)

ceEX

where the second inequality holds since d,(V;,V;) + do(U;, Uj) < 2, the third inequality follows
from the fact that |x —y| < z —z + 2z — y for z > max{x,y} and the last inequality follows
from the observation that |V;||V;| = (1 + O(V/3))|W;||[W;]. Similarly, it holds that |ind(U;, U;) —
ind(W;, W;)| = O(V/9), so |ind(V;,V;) — ind(U;,Uj)| = O(V/3) when i,j are good. We finish by

observing that

VillV; Ui||U;
ind(P) —ind(Q) < Y _ (' (u) ; ind(V;,V;) — | (u) ‘md(UZ,U )) +2V/5 = O(V9)
2 2
where the first inequality holds since }; .q >, [Vil|V;lind(V;, V;)/(5) < 2V and the second
inequality is true since |V;||V;| = (1 + O(\/5)> \Ui||U;| and ind(V;,V;) = (1 + O(\/S)) ind(U;, Uj)
when i and j are good, and since ind(Q) < 1. Therefore, taking a suitable § = ©(¢?) in the

1<j good

statement of the lemma suffices. O

Lemma 2.28. Let P,Q be 6-close equipartitions of a colored graph G, where |P| =|Q|. Then any
equitable refinement Q' of Q is d-close to an equitable refinement P’ of P, with |P'| = |Q’.

Proof. Write P = (V1,...,V%),Q = (U1,...,Uy),Q = (U11,...,U1ry...,Uk1, ..., U) where U; =
U§:1 Uij. Also, for any i,j let W; = V;NU; and W;; = V; N Ul-j Then Ef 12: 1|Wij| =
i,j we take Vj; that contains W;; and ¢;; arbitrary additional elements from V; \ W;, where ¢;; is
chosen by using Lemma 2.25 in the following manner.

For 1 <i<kand 1 <j <r weset \j; = |V;|/r — |[W;;|. We set the multipartition M to
consist of all singleton sets {ij}, the set [k] x [r], and the sets {i} x [r] for 1 <1i < k. We set the
multipartition N to be the trivial one, just the singleton sets and [k] x [r]. Invoking Lemma 2.25,
we claim the following about the resulting £;;: Since >%_; Aij = [V;| —|W;|, which is an integer, this
will also equal the corresponding sum Z;Zl lij = |Vi| — |[Wj|, so we can get this way a refinement
of P. Also, for any integer m (in our case [V;|) it holds that |2 | =[] — 1, so the resulting V;;
would form an equipartition. The last issue that we need to deal with is when we have ¢;; = —1
for some ¢ and j, which could in fact happen. We claim however that in such a case we can move

to another solution for which ¢;; = 0. To see this, we note that £;; = —1 only if |V;|/r is not an
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integer, |Wi;| = |U;j| = [|Vil/r], and £;; = |[Aij]. But in this case one can see that there exists
J' # j so that £;j; = [A;;7] > 0, and so we can increase £;; by 1 at the expense of ¢;;:. O

Lemma 2.29. For any ¢ > 0 there exists 6 = da.29() > 0 such that the following holds: If P
and Q are d-close equipartitions of a colored graph G, P is (f,0)-robust and |P| = |Q|, then Q is
(f,e)-robust.

Proof. Let P, @ be equipartitions as in the statement and pick § = d2.27(¢/3). Consider an equitable
refinement @ of @ of size at most f(|Q|) = f(|P|). By Lemma 2.28 there exists some equitable
refinement P’ of P which d-approximates @’ where |P/| = |Q'| < f(|P|). The robustness of
P implies that ind(P’') — ind(P) < ¢ < ¢/3. By Lemma 2.27, |ind(P) — ind(Q)| < ¢/3 and
lind(P’) — ind(Q')| < /3. We conclude that ind(Q') — ind(Q) < e. Thus, Q is (f,e)-robust. [

The definition of §-close partitions works exactly the same for interval partitions. We observe

that interval equipartitions and their densities are mostly determined by the number of parts.

2
™ _close to
n

Observation 2.30. Any two interval equipartitions I and J of [n] into m parts are
each other. In particular, for any f, m and €, if n is large enough as a function of m and €, then

for such I and J the densities satisfy % Yot D ges ldo (L) — do ()] < €.

Proof. If I and J are two interval equipartitions of [n| with |[I| = |J| = m, then we can set
T = U?:ll[zL%J +1,i[21]. Clearly |T| < m? and I; \ T = J; \ T for every i € [m]. The second
part of the observation then follows easily from the first part for n large enough. O

2.5.2 The Core Lemmas

Definition 2.31 (Least Common Refinement). For two partitions P = (Vi,..., Vi) and Q =
(Ur,...,0n) of a colored graph G, the least common refinement (LCR) PN Q of P and Q is the
partition (Vi NUy,...,ViNU, ..., Vi,NUL,..., Vi N U;) (after removing empty sets from the list).

Note that even if P and @ are equitable, P ' @ is not necessarily equitable.

The following lemma allows us to combine an “order-respecting” interval partition and a robust
graph partition. The last statement in the formulation (about even n and m) is not needed for
the rest of the proofs concerning ordered graphs, but we will refer to it when we discuss ordered

matrices.

Lemma 2.32. For any 6 > 0 and positive integers k, m and b, there exists v = ~2.32(0,k) > 0
such that the following holds: If P is an equipartition of an n-vertex colored graph G (for n >
No32(0,k,m,b)) with |P| =k, and J is an interval equipartition of Sp of size m which is (f,)-
robust, where f(m) > mb, then there exist an interval equipartition I = I532(d, P,m,b) of size
m, an interval equipartition I' = I} 55(0, P, m,b) of size mb which refines I, an equipartition Q =

Q2.32(0, P,m,b) of size k which d-approzimates P, and an equipartition Q' = Qb 55(0, P,m,b) of

37



size at most To32(0,k,m) which is a refinement of both I and Q, all satisfying that the LCR
Q" =1I'NQ is an equipartition of size |Q"| = b|Q'| = |Q'||I'|/|I| (i.e., each set of Q' intersects
“nicely” all subintervals of the interval of I that contains it).

Furthermore, if m and n are even, then I “respects the middle”, that is Z:.Z/lz |I;| = %

5 -
Proof. We denote P = (Vi,..., Vi), and set v2.32(0, k) = d2.16(k,d/20). The sets of the original
interval equipartition J will be denoted by Jy,..., Jn.

We denote the eventual intervals of I by (Iy,...,I,,), denote the eventual intervals of I’ by
(i1, gy o ooy Ity « -+, Ligp) where I; = U?:1 I;; for any i € [m]. The eventual sets of @ will be
denoted by (U1, ..., Uy), the sets of Q' by (Wit, ..., Wit .., Win1, ..., Wy) where I; = J'_, Wis,
and the eventual sets of Q" will be denoted as Wi;s = Wi, N I;;. We pick ¢t = k[20/6], and
correspondingly 7% 32(0, k,m) = mt.

Before choosing the partition intervals and sets themselves, we will choose sizes for the sets,
and also choose sets of indexes K1, ..., K} describing the connection of @ to its refinement Q’.
That is, eventually we will have U, = U(i s)eKa Wis for every a € [k]. Finally defining the eventual
Kiq = {s: (is) € Ky}, Uiq = I; N U, and Ujj, = I;; N Uy, we will also have Uj, = USGKm Wis and
Uija = Userc,, Wiis-

We next determine the sizes |Kjq|, which will be found through our first use of Lemma 2.25

(and some further processing). We set the following parameters and multipartitions.
e\, = t‘Ji N Va|/‘JZ“.

e N contains the singleton sets {(ia)}, the set [m] x [k], and the set {i} x [k] for every i € [m)].

Note that in particular 25:1 Aig = t is an integer, so we also have Z];:l bio = t.

e M contains the singleton sets {(ia)}, the set [m] x [k], and the set [m]| x {a} for every
a € [k]. Note that since |J;| = 2 £ 1= (1£2)2 and [V,| = (1 £ £)%, we have 37" | X\ig =
(1+ 2mT+k)mTt, which means that for n large enough all the sums >, 4;, will equal %t +1

(note that 2 is an integer), and moreover the number of a € [k] for which Y7, £ = 7% +1

will equal the number of a € [k] for which this value is %% —

After obtaining the values ¢;, through Lemma 2.25, we obtain ¢} from ¢;, through the following
mt
T

process: For all a for which > ", £;q = we set 05, = {;q for all i € [m]. Otherwise we each time

take an a for which /", £io = % 4+ 1 and an o’ for which Y7 | f;w = %% — 1. We choose i for
which liq > Cigr set U, = liq — 1, L, = L;ior + 1, and for all other i’ we set £, = lyr and £, , = lirgr.

The resulting £, satisfy El;:l Co=1, >0, =" and £, = \jg £ 2.

i=1 "ia
Now we construct disjoint K1, ..., K C [m] x [t] so that for every i € [m] and every a € [k] we
have |K;q| = £},. By the equations on the sums of ¢;, above this is doable, and results in [K,| = 7%

for every a € [k].
Next, we determine the sizes of the sets I;; of I’ and Wjjs of Q”, through a second use of Lemma

2.25. We set the following parameters and multipartitions, for determining ¢;;5 = |Wjjs|.
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e We plainly set \jjs = A = 3 for all i € [m], j € [b] and s € [t]. Since all values are the same,
the ¢;;5 will have value differences bounded by 1, as befits the equipartition Q"

e M consists of the singletons, the set [m] x [b] x [t], and the following.

— The set U,cg, ({1} x {j} x {s}) for every i € [m], j € [b] and a € [k]. This will make
|

Uija have size between L'Kti‘" |1;;]] and [@HZ] | (see about |I;;| below).

— The set {i} x {j} x [t] for each i € [m] and j € [b]. Eventually we will have |I;;| =
St lijs € {5 ] [5551}, so I' will be equitable.

— The set {i} x [b] x [t] for each i € [m]. Eventually we will have || = 3¢, Z?:l lijs €
{l5], 51}, so I will be equitable.

— If n and m are both even, we also add the sets [1,m /2] x [b] x [t] and [m/2+1, m] X [b] x [t]
to M. Eventually we will have Z?L/f Ll =32 04 il = n/2.

e N consists of the singletons, the set [m] x [b] x [t], and the following.

— The set {i} x [b] x {s} for every i € [m] and s € [t]. This will ensure that the eventual
Q' is equitable.

— The set J,cx, ({i} x [b] x {s}) for every i € [m] and a € [k]. This will make every Ui,
have size between L@HIH and ('KI%HLH

— The set U5 ek, ({i} % [b] x {s}) for every a € [k]. This will ensure that the eventual @

is equitable.

After obtaining the values /;;s for the respective set sizes |W;js|, we finally construct the partitions
themselves. First we construct I as the only interval partition for which |I;] = S°%_; 22:1 ;s for
every i € [m], and I’ as the only refinement of I for which |I;;| = 320,

J € [b]. For every i € [m] and s € [t] let b;s € [k] be the index such that (is) € Kj,,. We now go over

lijs for every i € [m] and

the indexes i € [m] and j € [b], and partition the vertices of I;; into the sets Wjj, so that as many
members of V;,, N I;; as possible will go into every W;;s. When we can no longer assign vertices
in this manner (because |I;; N V3| will not necessarily equal >, _; £ijs), we assign the remaining
vertices to complete the sets that do not yet have the correct size.

Having defined I, I’ and Q”, we define @’ by setting W;s = U2:1 Wijs for every i € [m] and
s € [t], and define @ by setting Us = U ;5)e i, Wis- All properties of 1, I', Q, Q and Q" immediately
follow from the construction, apart from the relationship between ) and P that we still need to
prove.

Because of the way we chose the sets W;;s to maximize the number of vertices they contain

from the “correct” sets of P, The partitions P and @ will be §-close if

k
ZHVGDIM‘ - ‘Uaﬁfin < in.

m b
=1a=1

=17
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Denote the densities according to the string Sp by dpq(lij) (where a € [k]), and the densities
according to Sg by dgq(I;j). For n large enough, because I’ is an equipartition (interval sizes

differ by not more than 1), we have

m b k m b k
% DD Van Iyl = [Ua N Il < % SN ldpalliy) — dg.a(li)l-
=1 j=1a=1 =1 j=1a=1

From now on we bound the sums on the right hand side. Recall that J denotes the original
interval equipartition of size m, and let J’' be any refinement of J of size mb. By Observation
2.30, for n large enough we have -1 D aclk] 2icfm] 2jep [dPallij) — dpa(Jij)| < 6/20. By Lemma
2.16, we know that %Zae[k} >icim] 2ojep [dPalJij) — dpa(Ji)| < 6/20. Now, recall that we
chose the sets K, so that [Kq| = t - dpa(J;) £ 2. This means that 1 2 aelk] 2uicim) [dPa(Ji) —
dg.a(li)| < /5 (recalling also how we chose t). Finally, by our construction, for n large enough,
% Zae[k] Zie[m] Zje[b] |dg,a(1i) — dg,a(i;)| < 6/20. This follows from the size restriction that we
ensured for the sets U;, and Ujj,. Using triangle inequalities with all these bounds on the density

differences concludes the proof. O

Lemma 2.33. For any positive integer k, real value v, functionsr : NXN — N and f : N — N, and
any n-vertex ordered colored graph G (for large enough n), there exist an interval equipartition I into
m parts where k < m < So33(7,k, f,r), an equipartition Q" of G into mt parts (not necessarily an
interval equipartition) which refines I and is additionally (f,~)-robust, where mt < To 33(~, k, f, 1),
and an interval equipartition I' into m -r(m,t) parts also refining I, so that the LCR Q" = Q' NI’
is an equipartition into exactly mt - r(m,t) parts (so each set of Q' intersects “nicely” all relevant
intervals in I').

Moreover, if n is even, then m will be even and I will respect the middle.

Proof. For each [ € N we define a function g; : N — N by setting for every m € N
gi(m) = m - r(m, Tp.32(02.20(7), 1, m)/m).

Then we define a function h : N — N setting for every [ € N

h(l) = f(T2.32(02.20(7), 1, To.15(k, g1, 72.32(2.20(7), 1))))-

We start with an equipartition P that is (h, d2.29(7))-robust that we obtain by Observation 2.10,
and then with respect to the string Sp we obtain by Observation 2.15 an interval equipartition J
that has at least k parts and is (g‘p‘,vg,gg(ég,gg(’y), | P|))-robust. Note that |P| < T5.10(1, h, d2.29(7)),
and hence |J| < To.15(k, 915 10(1,h,02.20(+)) » V2.32(02.20(7), To.10(1, b, 02.29(7)))), Which we set as our
Sa.33(7, k, f,7).

If n is even, then we make sure that k is also even (otherwise we replace it with k£ + 1 in all of
the above), and then |J| will be even as well (and our subsequent use of Lemma 2.32 will provide
an I that respects the middle).
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We then invoke Lemma 2.32 to get our partitions I = I232(d2.29(7), P, |1, gp|(|])/]J]), 1" =
15 35(82.20(7), P; 171, g1py (171 /17]), and Q" = Q% 35(62.20(7), P, | J], gyp((|J1)/17]). By the size guar-
antees of Lemma 2.32 we have |I| = |J| (ensuring our size bound for |I]), and |Q’'| is bounded by
T2.32(02.29(7), T2.10(1, by 02.29(7))5 S2.33(7, K, f,7)), which we set as our Th33(v, k, f, 7).

Lemma 2.32 guarantees all requirements apart from the robustness of @’. To prove it, we
note that Q' is a refinement of the partition Q@ = Q2.32(02.20(7), P, |J|, 9;p(|J])/|J]) into at most
T.32(02.29(7), | Pl, T2.15(k, g p)s v2.32(02.20 (7), | P]))) parts, where Q| = |P| and @ and P are d2.29(7)-
close. Hence by invoking Lemma 2.29 (which makes @ (h,~y)-robust), and then Observation 2.11,
we get that @’ is indeed (f,)-robust. O

2.5.3 The Finite Case for Graphs

This section contains the proof of Theorem 2.6 for the case that the forbidden family F is finite.

This is the ordered generalization of the finite induced graph removal lemma (Theorem 2.1).

Theorem 2.34 (Finite ordered graph removal lemma). Fiz a finite set ¥ with |X| > 2. For any
finite family F of ordered graphs F' : ([nzF]) — ¥ and any € > 0 there exists § = 0(F,e) > 0, such
that any ordered graph G : (‘2/) — X that is e-far from F-freeness contains at least dn? induced

copies of some graph F € F.

The proof of Theorem 2.6 is completed in Section 2.6, by considering the case where F is infinite.
The proof for the infinite case mostly relies on ideas and tools presented in this section, but requires

another step, which is motivated by the ideas of Alon and Shapira [12] for the unordered case.

2.5.4 Representing Subsets

Fix a finite alphabet 3 and a finite family F over ¥. Let dr denote the largest number of ver-
tices in a graph from F. Now let G = (V,¢) be an n-vertex X-colored graph and suppose that
I,I',Q', Q" are equipartitions of G of sizes m, mb, mt, mbt respectively, so that I, I’ are interval
partitions, I’ and @’ refine I, and Q" = I' M Q'. More specifically, we write I = (I1,..., 1),
I' = ([11,...,Ilb,...,fml,...,fmb), Ql = (Ull,...,Ult,...,Uml,...,Umt), Q” = (U1117"'7Umbt)7
where I; = U£:1 I = ' _, Ujs for any j € [m] and Uj,s = I;; NUjs for any j € [m],r € [b],s € [t].
Note that this is the same setting as the one obtained in Lemma 2.33, but we do not apply the
lemma at this point; in particular, we currently do not make any assumptions on the equipartitions
other than those stated above. We may and will assume whenever needed that n is large enough
(as a function of all relevant parameters), and that any tuple of subsets of V' considered in this

section has at least two parts (i.e., it is not trivial).

Definition 2.35 (Representing subsets). Let «, 8, > 0 be real numbers and suppose that A =
(A1,...,A)) is an equipartition of G. We say that B = (B4, ..., B;) represents A if B; C A; for
any i € [l]. Furthermore, we say that B (a, 3, u)-represents A if the following holds.
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e B; C A; and |B;| > an for any i € [l].
o All pairs (B;, Bj) with i < j € [l] are B-regular.
i é Ei<je[l} Zaez ‘dU(Bia Bj) - dU(Aia Aj)’ < .

The following lemma is a slight variant of Corollary 3.4 in [7], suggesting that partitions that
are robust enough have good representing subsets. The proof follows along the same lines of the

proof of Lemma 3.2 in [56], so we omit it.

Lemma 2.36 ([7, 56]). For any 1 > 0 and function 8 : N — (0,1) there exist a function f =
2(%’5) : N = N and a real number v = v2.36(1t) > 0, such that for any integer I > 0 there is a real
number a = a36(5, 1, 1) > 0, all satisfying the following. If A = (A1,..., A;) is an (f,v)-robust

equipartition of G, then there exists a tuple B = (B, ..., B;) which (o, f(1), p)-represents A.

The next lemma is not hard to derive from Lemma 2.36 using Lemma 2.13, and is more suitable

to our setting.

Lemma 2.37. For any function 5 : N — (0,1), function g : N — N, and real number pn > 0, there
exist a function f = fé3397“ : N — N and a real number v = v2.37(1t) > 0, so that for any integer > 1
there exists o = o 37(8, g, 1, 1) > 0 satisfying the following: If A = (Ai,...,A;) is an (f,~)-robust
equipartition of G and A" = (A11,...,A1L, .-, Air, ... Aip) is an equitable refinement of A, where
IL < g(l) and A; = UJL:1 A;j for any i € [l], then there exists B = (Bi1,...,Bir,... B, ..., Bir)

which (o, B(IL), u)-represents A', and satisfies

Z Z Z|d ij> Birr) — do(Ai, Ayr)| < 24

(2) i<i’€ll] j,j’€[L] o€X

Proof. Pick f = fogk — 2(%6“) og and v = y237(n) = min{d2.13(|3|, 1), v2.36(p)}. Also pick
a = a37(8, 9, 1,1) = az36(5, 1, 9(1)), and suppose that A is (f,~)-robust. By Observation 2.11
and the fact that |A’| =1L < g(I), we know that A’ is (f2 36 ,72 36(f1))-robust, so by Lemma 2.36
there exists a tuple B = (Bi1,...,Bir,... B, ..., Bjp) which (a236(8, u, LL), B(IL), p)-represents
A’, and by the monotonicity of a, B also («, B(IL), u)-represents A’. In particular,

Z Z Z‘d (Bij, Birjr) — do (A;y ;’j’)’éﬂ'

2) i<i’'€l] 4,j'€[L] o€EX

Now by Lemma 2.13, and since |A| < g(1) < f(1),

Z Z Z |do(A Z]’ —dy(Ai, Ay)| < p.

2) i<i’e(l] j,j'€[L] o€X

Combining the above two inequalities and using the triangle inequality concludes the proof. O
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2.5.5 The Graph of the Representatives and its Coloring

For the next step, let I' = I'(X, t) denote the collection of all ¢ x ¢t matrices M of the following form:
Each entry of M is a non-empty subset of the color set ¥ (where a subset is allowed to appear in
multiple entries of M), so |[(,t)] < 2/5*.

Definition 2.38 (Threshold color matrices, threshold graphs, undesirability). Suppose
that W = (Wi, ..., Winee) represents Q" and define Wi, = (Wi, ..., Wipe) and Xj = (Uj1, ..., Ujt)
for any j € [m] and r € [b]. Let 0 <n < p < 1/|3]| be real numbers.

For two t-tuples A = (Ay,...,A) and B = (By,..., B;) where As, B CV for any s € [t], the
n-threshold matrix M = M(A, B,n) € T’ of the pair A, B is the t X t matriz whose (s, s’) entry (for
(s,8') € [t]?) is the set of colors o € % that satisfy dy(As, By, c [a,,B,) > 1. Note that this set
cannot be empty since n < 1/|X].

The (n, W)-threshold graph H{}, is an (ordered) I'-colored graph defined as follows: The vertices
of Hj}, are all parts of I', and the color of the edge LjyLjs is M(Wjp, Wi, n).

The edge Ljy Ly, of Hy, is p-undesirable if j' > j and at least pt* of the pairs (s, s) € [t]* satisfy
M(Xj, Xj,p)ls,s') € M(Wjp, Wjrr,m)[s, s']. Finally, Hyj, is p-undesirable if at least p("y)b?* of the

edges L1 in it are p-undesirable, and p-desirable otherwise.

In other words, an edge I;.I;,+ is undesirable if there are many pairs of sets Wj.s, Wjivg in
W, for which the density of some original edge color in Wj.s X Wiy is significantly smaller than
its density in Ujs X Ujig. H{ZV is undesirable if it contains many undesirable edges. Note that the
set of p-undesirable edges in Hy}, is orderly: Whether an edge I, Ij,» of Hy}, is undesirable or not
depends only on its color M (W, Wj,.,n) and on M (X;, X;/, p).

The following lemma relates the robustness of our partitions to the desirability of the resulting
threshold charts.

Lemma 2.39. For any 0 < p < 1/|¥| and functions § : N — (0,1/]|X]) and g : N — N, there
exist a function f = ffgﬁgg : N = N and positive real numbers p = pa.39(p) < p, ¥ = Y2.39(p) and
a = ag39(p, B,g9,m,t), such that if Q" is (f,7)-robust and |Q"| < g(|Q’]), then there is a tuple

W = (Wii1, ..., Wie) which (o, B(mbt), p)-represents Q", and furthermore H‘%Q is p-desirable.

Proof. Let 0 < p < 1/|¥| and suppose that H‘%Q is p-undesirable, where W is any tuple that
represents Q. The definition of undesirability implies that

p(3)0%pt*p/2  p?
Z Z Z Z |d W]TS7WJ’T’5 ) - da(Ujs, Ujls/)’ > (2(2721)t2b2 / = % (2.2)

(2 ]<J 'e|m] s,s'€lt] r,r'€lb) c€ED

Indeed, if M(X;, X1, p)[s,s'] € M(Wj,, Wi, p/2)[s,s'] then there exists some o € ¥ for which
de(Ujs, Ujrst) 2> p but do(Wjps, Ujrrg) < p/2, so each such event contributes p/2 to the sum in the
left hand side.
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Therefore, H‘%2 is p-desirable if the above sum is smaller than p3/2. Thus, we pick u(p) = p3/5.
Also pick 5557 = fof, v230(p) = 72.37(1), and a2s9(p, B,9,m,t) = as37(B, g, p,mt). Since
Q' is ( 5’3"7’“,72.37(u))—r0bust, and since |Q"] < ¢(|Q’']), Lemma 2.37 implies that there exists
W = (Wi11,-- -, W) which (o, 8(mbt), u)-represents @', also guaranteeing that the left hand
side of (2.2) is at most 2u < p?/2, so H‘%Z is p-desirable. O

Definition 2.40 (Nicely colored subgraph). Let W = (Wi11,..., W) be a tuple of subsets that
represents Q" and let n > 0. A subgraph D = (U;n:1 Dj,cp) of Hy, is said to be nicely colored if
the following conditions hold.

e Forany j € [m], D; C I; and |D;| = df.

o)

e For any fized j € [m], all edges inside D; have the same color from T, denoted by i

o For any fized j < j' € [m], all edges between D; and Dj have the same color from T', denoted

(D)
by ij, .

The next lemma follows directly from Corollary 2.20.

Lemma 2.41. For any two integers m,t > 0 there exists R = Rg.41(m,t) satisfying the following:
If b > Rg41(m,t), then for any tuple W = (Wi11,..., W) that represents Q" and any n > 0
there exists a nicely colored subgraph D = Do 41(W,n) of HIT/]V Moreover, if HgV is p-desirable for
some n < p < 1/|%|, then the number of p-undesirable edges in D is at most 2p(rg)(d;)2.

Proof. Take Ry 41(m,t) = R2_20(2|E‘t2,m, dr) > Ra20(|T¢|,m,dx). Since the set of p-undesirable
edges in Hgv is orderly, we may apply Corollary 2.20 on Hg[,, to get a nicely colored subgraph D
of it. If Hy}, is p-desirable for some n < p < 1/|%|, then by definition it has at most p("y)b* p-
undesirable edges, and so the last condition in Corollary 2.20 implies that D has at most 2p (7;) (dr)?
p-undesirable edges. O

2.5.6 Cleaning the Original Graph

Definition 2.42 (Cleaned graph). Let W = (Wh11, ..., Wiwt) be a tuple of subsets which represents
Q", let n > 0, and suppose that D is a nicely colored subgraph of H{},. The cleaned graph G’ =
G'(G,D) = (V,) is defined as follows. For any u < v € V where u € Ijs and v € Iy, we
set d(uv) = c(uv) if c(uv) € C’j(f,)) [s,8"], and otherwise we set ¢/ (uv) to an arbitrary color from

(D) ’
Cji'ls, 8.
The next lemma states that if D comes from a desirable HJ},, then G'(G, D) is close to G.

Lemma 2.43. Suppose that D is a nicely colored subgraph of some H{}V with W representing Q"
and 0 <1 < p, such that at most 2p("y)d% edges of D are p-undesirable. Then G' = G'(G, D) is
(7|2]p + 2/m)-close to G, where m = |I|.
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Proof. Write G’ = (V, /) and let J denote the set of pairs j < j' € [m] such that D; x Dj» contains
an undesirable edge. An edge e € (‘2/) may satisfy ¢(e) # c(e) only if at least one of the following
holds (some of the inequalities stated below rely on the assumption that n is large enough).

1. e lies inside some part I; of I. The number of such edges is Z;n:l (‘123") < m((ném]) < 2(3)

m

2. e € I, x Ij, where (j1,j2) € J. But | 7| < 2p("}): The number of p-undesirable edges in D is
exactly |J ]d2f, since D is orderly (with respect to the parts Dq,..., D,,) and has dr vertices
in each D;. Thus, |J ]de < Qp(gl) de, which implies the desired inequality. Therefore, the
number of edges e of of this type is less than 3p (g)

3. e € Ujs x Ujyy where j < j' € [m], (4,7') ¢ J, and M(X;,Xj,p)[s,s'] € C;(D)[s,s']. But
since the number of pairs (s,s’) € [t]? that satisfy this condition for a fixed (j,5') ¢ J is at
most pt?, only at most 3p|I;||1;/]/2 of the edges e € I; x I; belong here, implying that the
total number of edges of this type is less than 2p(g’).

4. e € Ujs x Uyrg where j < j' € [m], (4,5") ¢ J, and M(X;, Xjr,p)[s,s'] € Cjj:(D)[s, s'], but
de(ey(Ujs, Ujig) < p. The number of such edges in Ujs x Ujry is at most |3| - p|Ujs||Ujs |, and
the total number of such edges is less than 2p|%(5).

Therefore, the total number of edges e with c(e) # ¢/(e) is less than (7p|S| 4+ 2/m)(5). O

Lemma 2.44. Let W = (Wi, ..., W) be a tuple that represents Q" and let n > 0. If D is a
nicely colored subgraph of Hy}, and the cleaned G'(G, D) contains a copy of some F' = ([np],cp) € F,
then there exist Wi ri55..., W.

jnF"'nFSnF

€ W with the following properties.
e For anyi € [np — 1], either jir1 > ji, or jiy1 = Ji and rip1 > 1i.
o For any i < i € [ng] it holds that de, iy (Wirisi, Wiyrys,) = 1-

Proof. Suppose that G'(G, D) = (V, ) contains a copy of F whose vertices in V are v; < ... <
Ung. For any i € [npl], let j; € [m],s; € [t] be the indices for which v; € I, and denote
the vertices of D inside Ij, by Dj, = {Ljpr,,. .-, Ljr, }, where riy < ... < rig, € [b] for any
i € [np]. Then for any 7,7 € [np| and [,I' € [dx], for which either i < ¢/, or i = ¢ and | < U/,
it holds that cp(ii') = ¢ (vi,vy) € C'J(gl), (5,850 = M(Wjipiys Wiirs1)[8i5 517], and so by definition
ch(ii’)(ijzsm ‘/Vji/m/l/si/) > 1.

Therefore, the sets Wi, 1615-.., W.

inr s, . satisfy the conditions of the lemma: They exist,
np'nMpnpeng

since np < dr. The first condition holds since j; < ... < jy,, and if j; = ji41 then r; = Tit1)i <
T(i+1)(i+1)- Lhe second condition holds by the first paragraph of the proof (putting I = i and
I'=14). O
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2.5.7 Proof of Main Theorem

Suppose that G is e-far from F-freeness. Take the function r = Rs 41 (note that r is a two-variable
function) and let g : N — N be defined by g(I) = Ir(l,]) for any | € N. Also take k = [20/¢],
p=¢/8X], and 8 : N — (0,1/|X]) as a constant function that satisfies 5(l) = 5./124(d}') for any
I € N. Also take f = f£’369’9, and v = y2.39(p).

Apply Lemma 2.33 with parameters k,~,, f, obtaining the equipartitions I, 1", Q’, Q" of sizes
m, mb, mt, mbt as in the statement of the lemma, where k < m < So.33(~, k, f,r), mt < Tos3(v, k, f,7),
b=r(m,t) = Ra41(m,t), and Q" is (f,~)-robust. Observe that |Q"| = mtr(m,t) < g(mt) = g(|Q']).

Next, define o = aa39(p, 3,9, S233(7, k, f,7r), T233(7, k, f,r)) and p = pa39(p). By Lemma
2.39, and since (1) = gﬁ(d]:) for any [ € N, there is a tuple W which («, 55./124((17’)> [1)-Tepresents
Q", and H‘%Q is p-desirable. By Lemma 2.41, and since b = R 41(m,t), there is a nicely colored
subgraph D = D3 41(W, p/2), containing at most 2p(") (d7)? p-undesirable edges.

Lemma 2.43 implies that G’ = G'(G, D) is (7|X|p + 2/m)-close to G; but 7|X|p + 2/m <
7e/8 + 2/k < e, so G’ contains a copy of some F = ([np],cp) € F. Therefore, by Lemma 2.44
€ W that

satisfy the conditions of the lemma. As all pairs of sets from W are ﬁgﬁi(np)—regular (since

(putting n = p/2 in the statement of the lemma), there exist Wj sy, s Wi, ey
nr < dr), we can apply Lemma 2.14 to conclude that the number of F-copies in G is at least én?

for g =np < dr and § = ko14(p/2,np)a™F > Ko14(p/2, d]:)adf, concluding the proof.

2.6 The Infinite Case

In this section we use the same notation as in Section 2.5.3, unless stated otherwise. The proof of
Theorem 2.6 follows that of Theorem 2.34 almost word by word, with only one major difference:
In the proof of Theorem 2.34 we have picked dr to be the largest number of vertices in a graph
from F, and showed that if G is e-far from F-freeness than there must be a set of at most dr
representatives of parts in Q”, that span a large number of F-copies for some F' € F. However, in
the infinite case, such a definition of dr cannot work. Instead, we take dx(m,t) to be a parameter
that depends on the family F, the size of the alphabet |X| and the integers m,t (where m = |I|,
mt = |Q'|). It is then shown that with this choice of dx, the proof follows similarly to the finite
case, with Lemmas 2.41 and 2.44 being replaced with similar lemmas that are suitable for the

infinite case (Lemmas 2.47 and 2.49 below, respectively).

2.6.1 Embeddability

Definition 2.45 (Embeddability). For a finite alphabet X, integers m,t > 0, I'(X, t)-colored graph
with loops H = ([m],cpr) and X-colored graph F = ([nFp],cr), we say that F is embeddable in H
if there exists a mapping h : [np] — Vi with the following properties.

o h is weakly order-preserving: h(1) < ... < h(ng).
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o There exist integers $1,...,Sn, € [t] so that cp(ii') € cu(h(i), h(i"))[si, si] for any i < i €

[np].
A family F of 3-colored graphs is embeddable in H if some F' € F is embeddable in H.

The next lemma states that the desired dr is indeed well-defined. It is similar in spirit to the
ideas of Alon and Shapira [12] (see Section 4 there).

Lemma 2.46. Fiz a finite alphabet ¥. For any (finite or infinite) family F of 3-ordered graphs
and integers m,t > 0, there exists dr = dgg'%)(m,t) with the following property. If H = ([m],cpr)
is a T'(3,t)-colored graph with loops, and if F is embeddable in H, then there is a graph F € F
which is embeddable in H and has at most dg_%'%) (m,t) vertices.

Proof. Let H = H,, denote the set of all I'(X, t)-colored graphs H = ([m], cy) with loops, such
that F is embeddable in H. Note that [H, | < [T(Z, )™ < 2PF°™° For any H € H let Fiy C F
denote the collection of all graphs in F that are embeddable in H. Finally define
d@46) (4 o P
Um0 = o R,
where |F'| denotes the number of vertices in F. Since #H,, is finite, and since the set Fp is non-
empty for any H € H (by definition of H), the function dg_%'46) (m,t) is well defined. Now let H be a
graph as in the statement of the lemma and suppose that F is embeddable in H. Then H € H, 4,
so there exists F' € Fp of size at most d(]_%'%) (m,t). O

2.6.2 Adapting the Proof for Infinite Families

For what follows, a nicely colored (m,t)-subgraph is defined exactly like a nicely colored subgraph
(see Definition 2.40), except that each set D; is of size d(}-2'46) (m,t). The following is a variant of

Lemma 2.41 for the infinite case.

Lemma 2.47. For any two integers m,t > 0 there exists R = Rg47(m,t) satisfying the following:
If b > Ro47(m,t), then for any tuple W = (Wi11, ..., W) that represents Q" and any n > 0 there
exists a nicely colored (m,t)-subgraph D = Do 47(W,n) of Hy},. Moreover, if H]}, is p-desirable for

some n < p < 1/|¥|, then the number of p-undesirable edges in D is at most 2p(72”)(dg_%'46) (m,t))2.

The proof of Lemma 2.47 is essentially identical to that of Lemma 2.41, with any occurrence of
dr replaced by d(FMG) (m,t). In particular we take Roq7(m,t) = Ra.00(2I¥1% m, d§§'46) (m,t)).

Next we state the variant of Lemma 2.43 for the infinite case. The proof is essentially identical.

Lemma 2.48. Suppose that D is a nicely colored (m,t)-subgraph of some H{ZV with W representing
Q" and 0 < n < p, such that at most 2p(7§)(dg_%'46)(m,t))2 edges of D are p-undesirable. Then

G = G/(G, D) is (T[S|p+2/m)-close to G, where m = |1].
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The next lemma is the variant of Lemma 2.44 that we use in the infinite case. In contrast to

the previous two lemmas, here the proof is slightly modified, and makes use of Lemma 2.46.

Lemma 2.49. Let W = (Wi11, ..., Woe) be a tuple that represents Q" and let n > 0. If D is a
nicely colored (m,t)-subgraph of H{}, and G'(G, D) contains a copy of a graph from F, then there

exist F = ([np|,cr) € F, where np < dgg'%) (m,t), and sets Wi ps15..., W, e W, with the

JnpTnpsnp
following properties.

o For anyi € [np — 1], either jiy1 > ji, or jiv1 = ji and riy1 > 14.
e For any i < i € [ng] it holds that de,(iiy(Wirisi» Wiyrys,) = 1.

Proof. Consider the I'-colored graph with loops D’ = ([m],cps): For any j < j', cp/(jj’) = C’J(f,)).
Suppose that G'(G, D) = (V,) contains a copy of A = ([nal],ca) € F, whose vertices in V are
v1 <...<wp,. Foranyi € [ny],let j; € [m],s; € [t] be the indices for which v; € I},5,. Then for any

i <1 € [na] we have cq(ii") = (vv) € C'](g),
D' (by the mapping i — j;). By Lemma 2.46, there exists F' = ([ng],cp) € F which is embeddable
in D', where np < dgg'%)(m,t). Let h : [np] — D’ denote a mapping that satisfies the conditions

of Definition 2.45 and let s},...,s), € [t] be the indices satisfying cp(ii") € cp/(h(i), h(i"))[s], %]

ng 2 2

[si, sir] = epr(Figir)[S4, si7], and so A is embeddable in

for any ¢ < i € [np].

For any i € [np] denote the vertices of D inside Ipiy by Ingiyrs s-- - Iniyr where 77, <

) ;d]: ('m,'t) ’ i
< rédf(m’t) € [b] for any i € [np|. The sets Wy, -, Wh("F)’”%ansﬁtp satisfy the desired
conditions: They exist, since np < dg'%) (m,t), the first condition holds since h is order-preserving,

and the second condition holds since ¢ (i7') € cp/(h(i), h(i"))[s], s] = Cﬁgih(w)[sé’ Si]- O

Proof of Theorem 2.6. The proof goes along the same lines as the proof of Theorem 2.34, but any
occurrence of dr in the proof of Theorem 2.34 and the accompanying lemmas is replaced here by
dg_g'%) (m,t), including in the definitions of the functions 3, r, and the term nicely colored subgraph
is replaced by nicely colored (m,t)-subgraph. More specifically, here are the exact changes needed

with respect to the proof of Theorem 2.34.

e We take the functions § = ﬁgﬁ and 7 = Ry47 (in the finite case we took  as a suitable
constant function and r = Rg41). The function g is defined as g(I) = ir(l,1). Following the
application of Lemma 2.33, we have b = Rg 47(m, t).

e As in the the proof of Theorem 2.34, there is a tuple W which («, 3(mbt), u)-represents Q”,

and HI%Q is p-desirable. By Lemma 2.47, and by our new choice of b, there is a nicely colored
2
(m, t)-subgraph D of Hp/2, with at most 2p("%) (dg_%'%) (m, t)) p-undesirable edges.

e Lemma 2.48 implies that G’ contains a copy of a graph from F. Now Lemma 2.49 implies

€ W with np < dg'%) (m,t), that satisfy the

conditions of the lemma for n = p/2. Since all pairs of sets from W are ﬂgﬁi(mbt)-regular,

the existence of sets Wi 15w s Wiy sns
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and since mbt > b > d(}%'%) (m,t) > np, these pairs are also ﬁgﬁ(np)—regular. We apply

Lemma 2.14 to get that the number of F-copies in G is at least dn? for

g=nr < d§3'46)(m,t) < d(f2'46)(52.33(%k7f, r), Ta.33(7, k, f,7)),

(2.46)
6 = K2.14 (p/2, nF) OénF Z K2.14 (p/2, d_(gAG) (m, t)) Ozdf (m,t)

(2.46)
> %2~14(p/27 d.(7-%.46) (52.33 (’77 ka f: ’I”), T2A33 (’77 kv fa T)))ad}? * (52_33(v,k,f,r),T2‘33(’y,k:,f,'r)).
Indeed, the above bounds for ¢ and ¢ depend only on |X|, ¢, F, and not on n. O

2.6.3 Adapting the Proof for Matrices

Finally we give a sketch of the proof of Theorem 2.8 for square matrices. The proof is very similar
to the graph case, so we only describe why the proof for graphs also works here. Finally, we describe

shortly how the proof can be adapted to the case of non-square matrices.

Proof sketch for Theorem 2.8. Given a square matrix M : U x V' — X where U,V are ordered,
and a family F of forbidden submatrices, consider the >'-colored graph G = (U U V,¢) where
Y =X U{op} for some og ¢ X, and the union U UV is ordered as follows: All elements of V' come
after all elements of U, and the internal orders of U and V remain as before. The edge colors of G
satisfy c(uv) = M (uv) for any u € U and v € V, and c¢(uv) = o¢ otherwise.

The proof now follows as in the graph case. It is important to note that while in the graph case
one is allowed to change the color of any edge, here we are not allowed to change the color of an
edge from or to the color og. However, the proof still works, by the following observations. First,
since |U| = |V, the number of vertices in G is even, and so the interval partition I obtained here
“respects the middle”. That is, each part I; of I will be fully contained in U or in V. Therefore, for
every two parts [, I;s of I, either all edges in I; x I are colored by o or none of them is colored
by 0. Second, it follows that the set of edges of the cleaned graph G’ = G'(G, D) that are colored
by o is identical to that of G. In other words, to generate the cleaned graph we do not modify
edge colors to or from og. Since G is made F-free only by modifying colors between U and V to
other colors in X, one needs to modify at least ¢|U||V| edge colors, so the proof follows without

changing the main arguments. O

The above proof works for square matrices, but it can be adapted to general m x n matrices: If
m = ©(n), then the condition on I needed is slightly different than respecting the middle, but this
only slightly changes the structure of the equipartitions that we obtain via Lemma 2.33, without
significantly affecting the proof. The proof can also be formulated for matrices with, say, m = o(n)
and m = w(1l), but then Lemma 2.33 needs to be especially adapted to accommodate the two
“types” of vertices (row and column). Essentially we will have two interval equipartitions, one

of the row vertices and one of the column vertices, along with their corresponding refinements.
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Finally, the case where m = O(1) is essentially the case of testing one-dimensional strings; strings
can be handled as per the discussion in Section 2.1.

It is important to note that one cannot use Theorem 2.6 as a black box to prove Theorem 2.8,
as the distance of the graph G to F-freeness might (potentially) be significantly smaller than e,
considering that the set of op-colored edges in the F-free graph that is closest to G might differ
from the set of op-colored edges in G.
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Chapter 3

Monotone Patterns: A Non-Adaptive
O((logn)los2%]) Algorithm

The results in this chapter appear in [22].

3.1 Introduction

For a fixed integer £ € IN and a function (or sequence) f: [n] — R, a length-k monotone subsequence
of f is a tuple of k indices, (i1,...,ix) € [n]¥, such that iy < --- < i and f(i1) < --- < f(ig).
More generally, for a permutation 7: [k] — [k], a w-pattern of f is given by a tuple of k indices
i1 < --- < i such that f(i;,) < f(ij,) whenever ji,jo € [k] satisfy 7(j1) < 7(j2). A sequence f
is m-free if there are no subsequences of f with order pattern w. Pattern avoidance and detection
in an array is a central problem in theoretical computer science and combinatorics, dating back
to the work of Knuth [97] (from a computer science perspective), and Simion and Schmidt [128]
(from a combinatorics perspective); see also the survey [137]. Recently, Newman, Rabinovich, Ra-
jendraprasad, and Sohler [109] (see [108] for the conference version) initiated the study of property
testing for forbidden order patterns in a sequence. Their paper was the first to analyze algorithms
for finding m-patterns in sublinear time (for various classes of the permutation 7). The main mo-
tivation for testing order patterns arises in data-series analysis. In this context, a huge amount
of continuous sequential data may arrive from various sources (e.g. sensors), with a need to de-
velop algorithms that are as efficient as possible to understand the structural behavior of the data.
Additional motivation naturally arises in combinatorics and other areas. See [109] for more details.

Of particular interest of m-freeness testing is the case where m = (12...k), i.e., 7 is a monotone
permutation. In this case, avoiding length-k£ monotone subsequence may be equivalently rephrased
as being decomposable into k— 1 monotone non-increasing subsequences, via Dilworth theorem [60].
Specifically, a function f: [n] — R is (12...k)-free if and only if [n] can be partitioned into k — 1
disjoint sets Ay, ..., Ag—1 such that, for each i € [k—1], the restriction f|4, is non-increasing. When
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interested in algorithms for testing (12...k)-freeness that have a one-sided error, the algorithmic
task becomes the following. For k € N and € > 0, design a randomized algorithm that, given query
access to a function f: [n] — R guaranteed to be e-far from being (12. .. k)-free, outputs a length-%
monotone subsequence of f with probability at least 2/3.

The task above is a natural generalization of monotonicity testing of a function f: [n] - R
with algorithms that make a one-sided error, a question which dates back to the early works in
property testing, and has received significant attention since in various settings (see, e.g., [1, 18,
32, 67, 82, 111, 138], Chapter 6 of this thesis, and the recent textbook [81]). For the problem
of testing monotonicity, Ergiin, Kannan, Kumar, Rubinfeld, and Viswanathan [63] were the first
to give a non-adaptive algorithm which tests monotonicity of functions f: [n] — R with one-
sided error making O(log(n)/e) queries. (Recall that an algorithm is non-adaptive if its queries
do not depend on the answers to previous queries, or, equivalently, if all queries to the function
can be made in parallel.) Furthermore, they showed that 2(logn) queries are necessary for non-
adaptive algorithms. Subsequently, Fischer [66] showed that (logn) queries are necessary even
for adaptive algorithms. Generalizing from monotonicity testing (when k = 2), Newman et al. gave
in [109] the first sublinear-time algorithm for (12...k)-freeness testing, whose query complexity
is (log(n)/e)°**). Their algorithm is non-adaptive and has one-sided error; as such, it outputs a
length-k monotone subsequence with probability at least 9/10 assuming the function f is e-far from
(12...k)-free. However, other than the aforementioned lower bound of Q(logn) which follows from
the case k = 2, no lower bounds were known for larger k.

The main result in this chapter settles the dependence on n in the query complexity of testing
for (12...k)-freeness with non-adaptive algorithms making one-sided error. Equivalently, we settle
the complexity of non-adaptively finding a length-k monotone subsequence under the promise that
the function f: [n] — R is e-far from (12...k)-free.

Theorem 3.1. Let k € N be a fized parameter. For any € > 0, there exists an algorithm that,
given query access to a function f: [n] — R which is e-far from (12...k)-free, outputs a length-k
monotone subsequence of f with probability at least 9/10. The algorithm is non-adaptive and makes
(logn)los2k) . poly(1/e) queries to f.

Our algorithm thus significantly improves on the (log(n)/ e)o(kQ)—query non-adaptive algorithm
of [109]. Furthermore, its dependence on n is optimal; in the full version of the results given here
[22], we provide a matching lower bound of Q((logn)!°82%)) on the non-adaptive query complexity.

The lower bound holds even for the more restricted case where f is a permutation.

Related work Testing monotonicity of a function over a partially ordered set X is a well-studied
and fruitful question, with works spanning the past two decades. Particular cases include when
X is the line [n] (see [18, 63, 66, 111] and Chapter 6), the Boolean hypercube {0,1}¢ [19, 35, 40,
45, 47, 48, 50, 52, 53, 95, 138], and the hypergrid [n]? [33, 36, 46]. We refer the reader to [81,

Chapter 4] for further discussion on monotonicity testing.
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This part of the thesis contributes to the line of work on finding order patterns in sequences
and permutations. For the exact case, Guillemot and Marx [90] showed that an order pattern 7 of

(k? log K)n; in particular, the problem

length %k can be found in a sequence f of length n in time 2°
of finding order patterns is fixed-parameter tractable (in the parameter k). Fox [74] later improved
the running time to 20(k*) . In the regime k = Q(logn), an algorithm of Berendsohn, Kozma, and

k/4+o(k)

Marx [28] running in time n provides the state-of-the-art. The analogous counting problem

has also been actively studied, see [64] and the references within.

Two related questions are that of estimating the distance to monotonicity and the length of
the longest increasing subsequence (LIS), which have also received significant attention from both
the sublinear algorithms perspective [2, 113, 126], as well as the streaming perspective [62, 76, 87,
107, 125]. In particular, Saks and Seshadhri gave in [126] a randomized algorithm which, on input
f: [n] = R, makes poly(logn,1/d) queries and outputs m approximating up to additive error on
the length of the longest increasing subsequence of f. This chapter and the following one also
study monotone subsequences of the input function, albeit from a different (and incomparable) end
of the problem. Loosely speaking, in [126] the main object of interest is a very long monotone
subsequence (of length linear in n), and the task at hand is to get an estimate for its total length,
whereas in our setting, there are Q(n) disjoint copies of short monotone subsequences (of length
k, which is a constant parameter), and these short subsequences may not necessarily combine to
give one long monotone subsequence. Considering general permutations 7 of length k£ and ezact
computation, Guillemot and Marx [90] showed how to find a m-pattern in a sequence f in time
20(k*log k) Jater improved by Fox [74] to 20()p,

3.2 Techniques

We now give a detailed overview of the techniques underlying Theorem 3.1, and provide some
intuition behind the algorithms and notions we introduce. The starting point of our discussion
will be the algorithm of Newman et al. [109], which we re-interpret in terms of the language used
throughout this chapter; this will set up some of the main ideas behind our structural result (stated
in Section 3.3), which will be crucial in the analysis of the algorithm. For simplicity, let £ > 0 be a
small constant and let k& € N be fixed. Consider a function f: [n] — R which is e-far from (12... k)-
free. This implies that there is a set 7' C [n]* of en/k disjoint (12...k)-patterns. Specifically, the
set T is comprised of k-tuples (i1,...,i;) € [n] where iy < --- < i and f(i1) < --- < f(ix) and
each i € [n] appears in at most one k-tuple in T.! A key observation made in [109] is that if, for

some ¢ € [k — 1], (41,...,0c,bet1,---50k) and (J1,-..,Jc, Jet1,- -+, Jk) are two k-tuples in T' which

'To see why such T exists, take T to be a maximal set of disjoint (12...k)-patterns. Suppose |T| < en/k and
consider the function g given by greedily eliminating all (12... k)-patterns in f, and note that g is (12...k)-free and

differs on f in less than en indices.
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satisfy i < je41 and f(ic) < f(jet1), then their combination

(/i17' ")iC7jC+17"‘ 7jk)

is itself a length-k monotone subsequence of f. Therefore, in order to design efficient sampling
algorithms, one should analyze to what extent parts of different (12...k)-tuples from 7" may be
combined to form length-£ monotone subsequences of f.

Towards this goal, assign to each k-tuple (i1,...,ix) in T a distance profile dist-prof(iy, ..., i) =
(di,...,dx_1) € [n]*~1, where n = O(logn).? This distance profile is a (k — 1)-tuple of non-negative
integers satisfying

2% <ijpq —ij < 2%t jelk—1];

and let gap(i1,...,ix) = ¢ € [k — 1] be the smallest integer where d. > d; for all j € [k — 1]
(i.e., d. denotes an (approximately) maximum length between two adjacent indices in the k-tuple).
Suppose, furthermore, that for a particular ¢ € [k —1], the subset T. C T of k-tuples whose gap is at
c satisfies |T,| > en/k? (such a c € [k — 1] must exist since the T,’s partition T). If (i1, ... i) € Te
and dist-prof(iy,...,ix) = (d1,...,dk), then the probability that a uniformly random element £ of
[n] “falls” into that gap is

2de

Pr [i.<€<4 >
ZN[Ir‘L] [Zc_ _'Lc+1] <,

(3.1)

Whenever this occurs for a particular k-tuple (i1, ...,i;) and £ € [n], we say that € cuts the tuple
(i1,...,ix). Note that the indices ic,1,...,%; are contained within the interval [€, £ + k- 2%*1] and
the indices i1,...,4. are contained within the interval [€ — k- 29+1 £]. As a result, if we denote by
54(£) €[0,1], for each d € [n], the density of k-tuples from T, lying inside [£ — k- 29F1 £ + k- 24+1]

(i.e., the fraction of this interval comprised of elements of T¢), we have

- 1l
E 2Ol =2 3 Prliestsicl g iz ()

de[n] defn  (i1,..0k)E€Te
dist-prof(i1,...,ig)c=d

For any /¢ achieving the above inequality, since n = O(logn), there exists some d* € [n] such that
da=(0) Z €/logn. Consider now the set of k-tuples T¢ 4«(¢) C T¢. contributing to d4+(¢), i.e., those
k-tuples in T, which are cut by £ and lie in [( — k-29"+1 ¢+ k-27 1], Denote ryeq = median{f(i.) :
(i1,...,1k) € Teq-(£)}, and let

Tp =A{(i1,...,0c) : (i1,..., 1) € Tpg+(€) and f(ic) < Tmed} and
TR = {(ic+17 s >ik) : (ih cee 77;]6) S Tc,d* (é) and f(lc) > Tmed}a

*We remark that the notion of a distance profile is solely used for the introduction and for explaining [109], and

thus does not explicitly appear in subsequent sections.

56



where we note that 77, and T both have size at least |T; 4+ (¢)|/2. If the algorithm finds a c-tuple
in Ty, and a (k — ¢)-tuple in Tg, by the observation made in [109] that was mentioned above, the
algorithm could combine the tuples to form a length-k monotone subsequence of f. At a high level,
one may then recursively apply these considerations on [¢ — k-2%"+1 /] with Ty, and [¢, ¢+ k-2% 1]
with Tr. A natural algorithm then mimics the above reasoning algorithmically, i.e., samples a
parameter £ ~ [n], and tries to find the unknown parameter d* € [n] in order to recurse on both
the left and right sides; once the tuples have length 1, the algorithm samples within the interval
to find an element of Ty, or Tg. This is, in essence, what the algorithm from [109] does, and this
approach leads to a query complexity of (log n)o(kQ). In particular, suppose that at each (recursive)
iteration, the parameter ¢, corresponding to the gap of tuples in T, always equals 1. Note that this

occurs when all (12...k)-patterns (i1,...,4x) in T have dist-prof(iy,...,ix) = (di,...,dr_1) with
di > dg > -+ > dg—1. (3.3)

Then, if k is at ko, a recursive call leads to a set T, containing 1-tuples, and Tr containing (ko —1)-
tuples. This only decreases the length of the subsequences needed to be found by 1 (so there
will be k — 1 recursive calls), while the algorithm pays for guessing the correct value of d* out of
Q(logn) choices, which may decrease the density of monotone ky-subsequences within the interval
of the recursive call by a factor as big as Q(logn).> As a result, the density of the length-kq
monotone subsequence in the relevant interval could be as low as €/(logn)*, which means that
(log n)Q(kO) samples will be needed for the kp-th round according to the above analysis, giving a
total of (logn)?**) samples (as opposed to O((logn)!°&2*]) which is the correct number, as we

prove).

In order to overcome the above difficulty, we consider a particular choice of a family T" of length-
k monotone subsequences given by the “greedy” procedure (see Figure 3.1). Loosely speaking, this
procedure begins with 7' = ) and iterates through each index i; € [n]\ 7. Each time, if (i) can be
extended to a length-k monotone subsequence (otherwise it continues to the next available index),
the procedure sets iy to be the first index, after i; and not already in T, such that (i1,i2) can be
extended to a length-k monotone subsequence; then, it finds an index i3 which is the next first index
after i9 and not in 7" such that (i1, i2,73) can be extended; and so on, until it has obtained a length-k
monotone subsequence starting at ¢;. It then adds the subsequence as a tuple to 7', and repeats.
This procedure eventually outputs a set T' of disjoint, length-£ monotone subsequences of f which

has size at least en/k?, and satisfies another crucial “interleaving” property (see Lemma 3.3):

(%) If (i1,...,1k) and (ji1,...,jk) are k-patterns from 7" and ¢ € [k — 1] satisfy j; < i1,
Je <'ic, and dcy1 < jJet1, then f(ict1) < f(Jet1)-

3Initially, the density of T within [n] is e, and the density of T%, or Tg in [ — k-2% *1 /] and [¢,£ + k- 27 +1] is
e/ logn.
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Moreover, a slight variant of (3.1) guarantees that for any (i1, ..., i) € T, with dist-prof(iy, ..., ix) =
(d17 .. 7dk71>7

2
Pr i, +2%/3 <8 <. —2%/3| > —.
£~[n]
Whenever the above event occurs, we say £ ~ [n] cuts (i1,...,i) at ¢ with slack, and note that
i1, .. 00 liein [€—k-2%T! ¢l and . 1, ..., in [£,€+k-2%T1]. We denote, similarly to the above,

d4(£€) € 10, 1] to be the density of k-tuples from T, which are cut with slack by £, and conclude (3.2).
We then utilize (x) to make the following claim: suppose two k-tuples (i1, ..., i), (ji,--.,7k) € T¢
satisfy dist-prof(iq,...,i;) = (di,...,dg—1), and dist-prof(ji,...,jx) = (d},...,d}_,), where d. <
d. — alog k, for some constant a which is not too small. If (iy,...,ix) and (j1,...,jx) are cut at ¢
with slack, this means that ¢ lies roughly in the middle of i, and i.41 and of j. and j.+1, and since
the distance between i, and i1 is much smaller than that between j. and j.y1, the index j; will
come before iy, the index j. will come before i., but the index i.+1 will come before j.i1. By (%),
flict1) < f(jer1) (cf. Lemma 3.14). In other words, the value, under the function f, of (¢ + 1)-th
indices from tuples in T¢ 4(¢) increases as d increases.

As a result, if £ € [n] satisfies 3,11 0a(f) 2 €, and 64(¢) < ¢ for all d € [n], that is, if the
summands in (3.2) are spread out, an algorithm could find a length-k monotone subsequence by
sampling, for many values of d € [n], indices which appear as the (c+1)-th index of tuples in T¢. 4(¢).
We call such values of ¢ the starts of growing suffizes (as illustrated in Figure 3.2). In Section 3.4.2,
we describe an algorithm that makes O(log n/e) queries and finds, with high probability, a length-%
monotone subsequence if there are many such growing suffixes (see Lemma 3.20). The algorithm
works by randomly sampling £ ~ [n] and hoping that £ is the start of a growing suffix; if it is, the
algorithm samples enough indices from the segments [£ + 27, ¢ + 2%+1] to find a (¢ + 1)-th index of
some tuple in T, 4(¢), which gives a length-k monotone subsequence.

The other case corresponds to the scenario where ¢ € [s] satisfies 3 ;1,1 0a(f) 2 €, but the
summands are concentrated on few values of d € [n]. In this case, we may consider a value of
d* € [n] which has 64« (¢) > ¢, and then look at the intervals [ —k-2%"+1 /] and [¢, £+ k- 29 +1]. We
can still define 77, and Tg, both of which have size at least |7, 4

/2 and have the property that any
c-tuple from 77, can be combined with any (k — ¢)-tuple from Tx. Additionally, since g4+ (¢) 2 &, we
crucially do not suffer a loss in the density of 17, and Tg in their corresponding intervals — a key
improvement over the Q(logn) loss in density incurred by the original approach we first discussed.
We refer to these intervals as splittable intervals (cf. Figure 3.3), and observe that they lead to a
natural recursive application of these insights to the intervals [¢ — k- 24"+ /] and [¢, £ + k - 27" +1].
The main structural result, given in Theorem 3.11, does exactly this, and encodes the outcomes of
the splittable intervals in an object we term a k-tree descriptor (see Section 3.3.3) whenever there
are not too many growing suffixes. Intuitively, a k-tree descriptor consists of a rooted binary tree
G on k leaves, as well as some additional information, which corresponds to a function f: [n] — R

without many growing suffixes. Each internal node v in G corresponds to a recursive application of
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the above insights, i.e., v has kg leaves in its subtree, a parameter ¢, € [kyo — 1] encoding the gap of
sufficiently many ko-tuples, and a collection of disjoint intervals of the form [¢£ — k- 24", ¢ 4 k - 2%]
where ¢ cuts (12... ko)-patterns with slack at ¢, and satisfies (3.2); the left child of v has ¢ leaves
and contains the (12...c)-patterns in Ty, and intervals [¢ — k- 29", £]; the right child of v has ky — ¢
leaves and contains the (12... (kg — c))-patterns in Tx and intervals [£, £ + k - 27'] (see Figure 3.4).

The algorithm for this case is more involved than the previous, and leads to the O((log n) g2 +])-
query complexity stated in Theorem 3.1. The algorithm proceeds in rg = 1 + |logy k] rounds,

maintaining a set A C [n], initially empty:
e Round 1: For each i € [n], include 7 in A independently with probability ©(1/(en)).

e Round r, 2 <r <rg: For each i € A from the previous round, and each j =1,...,0(logn),
consider the interval B; ; = [i — 27,7 + 27]. For each i’ € B, j, include ¢’ in A independently
with probability ©(1/(£27)).

At the end of all rounds, the algorithm queries f at all indices in A, and outputs a (12. .. k)-pattern
from A, if one exists.

Recall the case considered in the sketch of the algorithm of [109], when the function f has all
(12...k)-patterns (i1,...,%x) in T satisfying dist-prof(iy,..., i) = (di,...,dk_1) with di > do >
... > dp_1. In this case, the k-tree descriptor G consists of a rooted binary tree of depth k. The
root has a left child which is a leaf (corresponding to 1-tuples of first indices of some tuples in T,
stored in T7,) and a right child (corresponding to suffixes of length (k—1) of some tuples in T, stored
in TR) is an internal node. The root node corresponds to one application of the structural result,
and the right child corresponds to a (k — 1)-tree descriptor for the tuples in Tx. Loosely speaking,
as dy > ... > dp_1 the same reasoning repeats k — 1 times, and leads to a path of length k£ — 1
down the right children of the tree, the right child of the (k — 1)-th internal node corresponding to
a 1-tuple (i.e., a leaf).

To gain some intuition, we analyze how the algorithm behaves on these instances. Suppose that
in round 1, the algorithm samples an element i € [n] which is the k-th index of a 1-tuple stored in
the right-most leaf of G. In particular, this index belongs to the set T of the (k — 1)-th internal
node, as a second index of a cut (12)-pattern in the (k — 1)-th recursive call of the structural result.
Similarly, ¢ also belongs to that set Tx of the (k —2)-th internal node, as a part the third index of a
cut (123)-pattern in the (k — 2)-th recursive call. We may continue with all these inclusions to the
root, i.e., i is the k-th element of some (12...k)-pattern in T, which is cut in the first call to the
o Bia -
where d;» = d; + O(log k), since it iterates through all O(logn) intervals of geometrically increasing

structural result. Round 2 of the algorithm will consider the £—1 intervals B a s B,

4This is somewhat inaccurate, as in each step, after forming 77, and Tr, we apply the greedy algorithm again and
obtain new sets T}, and Tf, which may violate the assumption di > d2 > ... > dx. We ignore this detail at the

moment to simplify the explanation.
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lengths.® One can check that for each j € [k — 1], the interval B 4, contains [¢; — k- 2% ¢;], where
¢; is some index which cut the (k — j + 1)-tuple (ij,...,) with slack in the j-th recursive call of
the structural result. Recall that the set Ty, of 1-tuples has density Q(¢) inside [¢; — k- 2%, ¢;] and
may be combined with any (k — j)-tuple from Tx. Following this argument, in the second round of
the algorithm, A will include some index of 77, (for each j € [k — 1]), and these indices combine to
form a (12...k)-pattern — that is, with high probability, after two rounds, the algorithm succeeds
in finding a monotone subsequence of length k.

Generalizing the above intuition for all possible distance profiles necessitates the use of 1 +
|log, k| rounds, and requires extra care. At a high level, consider an arbitrary k-tree descriptor G
for Q(en) many (12...k)-patterns in f. Denote the root u, and consider the unique leaf w of G
where the root-to-w path (uq,...,uy) with uy = u and u, = w, satisfies that at each internal node
ug, the next node ;4 is the child with larger number of leaves in its subtree.® We call such a leaf
a primary index of G. The crucial property of the primary index is that the root-to-leaf path of
w, (u1,us,...up), is such that the siblings of the nodes on this path? have strictly fewer than k/2
leaves in their subtrees.

The relevant event in the first round of the algorithm is that of sampling an index i € [n] which
belongs to a 1-tuple of the primary index w of G. This occurs with probability at least 1—1/(100k),
since we sample each element of [n] with probability ©(1/(en)) while there are at least (en) many
(12...k)-patterns. Now, roughly speaking, letting (u1,...,up) be the root-to-w path in G, and
(u, ..., uy) be the sibling nodes, the subtrees of G rooted at uj, ..., u) will be tree descriptors for
the function f restricted to B; ;’s and within these interval, the density of tuples is at least €2(e). As
a result, the second round of the algorithm, recursively handles each subtree rooted at uj, ..., u),
with one fewer round. Since the subtrees have strictly fewer than k/2 leaves, |logs k] — 1 rounds
are enough for an inductive argument. Moreover, since the total number of nodes is at most 2k
and each recursive call succeeds with probability at least 1 — 1/(100k), by a union bound we may
assume that all recursive calls succeed.

Unrolling the recursion, the query complexity O((logn)!°%2%)) can be explained with a simple
combinatorial game. We start with a rooted binary tree G on k leaves. In one round, whenever
G is not simply a leaf, we pick the leaf w which is the primary index of GG, and replace G with
a collection of subtrees obtained by cutting out the root-to-w path in G. These rounds “pay” a
factor of ©(logn), since the algorithm must find intervals on which the collection of subtrees form
tree descriptors of f (restricted to these intervals). In the subsequent rounds, we recurse on each

subtree simultaneously, picking the leaf of the primary index in each, and so on. After |log, k| many

®Note that the intervals Bi,d_; and Bi,d;H may be the same, for instance when d; = d;41.

5Ties are broken by picking the left child.

"For example, if (u1,...,un) is the root-to-w path where u; is the root and up = w, the sibling nodes along the
path are given by u5,us, ..., u}, where u; is the sibling of 1;. Namely, if the I-th node on the root-to-w path is a left
child of the (I — 1)th node, then wu; is the right child of the (I — 1)-th node. Analogously, if the I-th node is a right
child of the (I — 1)-th node, then u; is the left child of the (I — 1)-th node.
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rounds, the trees are merely leaves, and the algorithm does not need to pay the factor O(logn) to
find good intervals, as it may simply sample from these intervals.

The execution of the above high-level plan is done in Section 3.4.3, where Lemma 3.21 is the
main inductive lemma containing the analysis of the main algorithm (shown in Figure 3.8 and
Figure 3.9).

Organization and notation We start by introducing the notation that we shall use throughout
this chapter below. In Section 3.3 we prove our main structural result, and formally define the
notions that underlie it: namely, Theorem 3.11, along with the definitions of growing suffixes and
representation by tree descriptors (Definitions 3.6 and 3.10). Finally, Section 3.4 leverages this
dichotomy to describe and analyze our testing algorithm, thus establishing the upper bound of
Theorem 3.1 (see Theorem 3.19 for a formal statement).

We write a < b if there exists a universal positive constant C' > 0 such that a < Cb, and a < b if
we have both a < band b < a. We frequently denote Z as a collection of disjoint intervals, I1, ..., I,
and then write S(Z) for the set of all sub-intervals which lie within some interval in Z. For two
collections of disjoint intervals Zg and Z7, we say that Z; is a refinement of Z if every interval in Z;
is contained within an interval in Zy. (We remark that it is not the case that intervals in Z; must
form a partition of intervals in Zy.) For a particular set A C [n] and an interval I C [n], we define
the density of A in I as the ratio |ANI|/|I|. Given a set S, we write  ~ S to indicate that x is
a random variable given by a sample drawn uniformly at random from S, and P(.S) for the power
set of S. Given a sequence f of length n, we shall interchangeably use the notions (12...k)-copy
(or (1,2,...,k)-copy), (12...k)-pattern, and length-k increasing subsequence, to refer to a tuple of
elements z1 < ... <z € [n] such that f(z1) < ... < f(xg).

3.3 Structural Result

3.3.1 Rematching Procedure

Let f: [n] — R be a function which is e-far from (12...k)-free. Let T be a set of k-tuples

representing monotone subsequences of length k within f, i.e.,
TG, i) € i < <and f(in) < o < i)}

and for such T" let E(T) be the set of indices of subsequences in T, so

ET) = |J {i....ix}

(11,0 ) ET

Observation 3.2. If f: [n] — R is e-far from (12...k)-free, then there exists a set T C [n]* of
disjoint length-k increasing subsequences of f such that |T| > en/k.
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To see why the observation holds, take T" to be a maximal disjoint set of such k-tuples. Then
we can obtain a (12...k)-free sequence from f by changing only the entries of E(T") (e.g. for every
i € E(T) define f(i) = f(j) where j is the largest [n] \ E(T") which is smaller than . If there is no
J € [n]\ E(T) where j < i, let f(i) = maxyep,) f(£)). Since f is e-far from being (12... k)-free, we
have |E(T)| > en, thus |T| > en/k.

In this section, we show that from a function f: [n] — R which is e-far from (12...k)-free and
a set Ty of disjoint, length-k£ monotone subsequences of f, a greedy rematching algorithm finds a
set T of disjoint, length-k monotone subsequences of f where E(T) C E(Tp) with some additional
structure, which will later be exploited in the structural lemma and the algorithm. The greedy
rematching algorithm, GreedyDisjointTuples, is specified in Figure 3.1; for convenience, in view
of its later use in the algorithm, we phrase it in terms of an arbitrary parameter kg, not necessarily
the (fixed) parameter k itself.

Lemma 3.3. Let kg € N, f: [n] — R, and let Ty C [n]*0 be a set of disjoint monotone subsequences
of f of length ky. Then there exists a set T C [n]¥0 of disjoint ko-tuples with E(T) C E(Tp) such
that the following holds.

1. The set T holds disjoint monotone subsequences of length k.
2. The size of T satisfies |T'| > |To|/ko.

3. For any two (i1,...,ik), (J1,---+Jk) € T and any € € [ko — 1], if i1 < j1, i¢ < je and
i1 > Jes1 then f(ies1) > f(jes)-

Proof of Lemma 3.3. We show that the subroutine GreedyDisjointTuples(f, ko, Tp), described in
Figure 3.1, finds a set T' with E(T") C E(T}) satisfying properties 1, 2, and 3. Property 1 is clear from
the description of GreedyDisjointTuples(f, ko, 7p). For 2, suppose |T'| < |Tp|/ko, then, there exists
a tuple (i1,...,ig,) € To with {i1,...,ik,} N E(T) = 0. Since GreedyDisjointTuples(f, ko, Zp)
increases the size of T' throughout the execution, {i1, ..., ik, }NT = () at every point in the execution
of the algorithm. This is a contradiction; when ¢ = 41, a monotone subsequence disjoint from T
would have been found, and ¢; included in T. Finally, for 3, consider the iteration when i = iy,
and note that at this moment, TN {i1, ..., ik, j1,---,Jko } = 0. Suppose that iy < jg, jet1 < to41;
if f(je+1) > f(ies1), then (i1,...,%0, jos1,. .., Jk,) IS an increasing subsequence in E(Tp) \ E(T),

which means that js1; would have been preferred over 4,11, a contradiction. O

Definition 3.4 (c-gap). Let (i1,...,ik,) be a monotone subsequence of f and let c € [kg — 1]. We
say that (i1, ...,1g,) 15 a c-gap subsequence if ¢ is the smallest integer such that icy1 —ic > ipr1 —1p
for all b € [ko — 1].

Note that for a set T' of disjoint length-ky monotone subsequences of f, we may partition

the ko-tuples of T" into (T7,...,Tk,—1) where for each ¢ € [kg — 1], T holds the c-gap monotone
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Subroutine GreedyDisjointTuples (f, ko, T0)

Input: A function f: [n] — R, integer kp € N, and a set Ty of disjoint monotone sub-
sequences of f of length k.
Output: a set T C [n]* of disjoint monotone subsequences of f of length k.

1. Let T'= () and ¢ be the minimum element in E(7p). Repeat the following.

i. Let iy < 4. If there exists jo,...,jr, € E(To) \ E(T) such that (i, jo,. .., jk,)
is an increasing subsequence of f, pick ig,... i, € E(Tp) \ E(T) recursively as
follows: for £ =2,..., ko, let iy be the smallest element in E(Tp) \ E(T') for which
there exist jot1,...,7k € E(To) \ E(T) such that (i1,...,%, Jet1,-- -, Jk,) IS an

increasing subsequence of f.
ii. If (41,...,14k,) is a monotone subsequence found by (i), set T - T'U{(i1,...,ix,)}-
iii. Let ¢ be the next element of E(Ty) \ E(T), if such an element exists; otherwise,

proceed to 2.

2. Output 7.

Figure 3.1: Description of the GreedyDisjointTuples subroutine.

subsequences of T. As these sets form a partition of T, the following lemma is immediate from

Lemma 3.3.

Lemma 3.5. Let f: [n] — R, and let Ty be a set of disjoint length-ky monotone subsequences of
f. Then there exist c € [ko — 1] and a family T C [n]¥ of disjoint monotone subsequences of f,
with E(T) C E(Ty) such that the following holds.

1. The subsequences in T are all c-gap subsequences.
2. |T| = |Tol/kg.
3. For any two (i1,...,ik), (J1,---+Jk) € T and any € € [ko — 1], if i1 < j1, i¢ < je and
i1 > Jey1 then f(ies1) > f(jes)-
3.3.2 Growing Suffixes and Splittable Intervals

We now proceed to set up notation and prepare for the main structural theorem for sequences
f:[n] = R which are e-far from (12...k)-free. In order to simplify the presentation of the sub-
sequent discussion, consider fixed k¥ € N and € € (0,1), as well as a fixed sequence f: [n] — R which

is e-far from (12...k)-free. By Observation 3.2 and Lemma 3.5, there exists an integer ¢ € [k — 1]

63



and a set T of disjoint monotone subsequences of f which have a c-gap, satisfying |T'| > en/ poly (k)
and property 3 from Lemma 3.5. For the rest of the subsection, we consider a fixed setting of such
c€lk—1] and set T.

We show (in Theorem 3.8) that one of the following two possibilities holds. Either there is a
large set of what we call growing suffizes (see Definition 3.6 for a formal definition), or there are
disjoint intervals which we call splittable (see Definition 3.7 for a formal definition). Intuitively, a
growing suffix will be given by the suffix (a, n] and will have the property that by dividing (a,n] into
O(logy(n—a)) segments of geometrically increasing lengths, there are many monotone subsequences
(i1,...,1x) of f lying inside (a,n] where each i; belongs to a different segment. In the other case,
an interval [a,b] is called splittable if it can be divided into three sub-intervals of roughly equal
size, which we refer to as the left, middle, and right intervals, with the following property: the left
interval contains a large set Ty, of (12...c)-patterns, the right interval contains a large set Tx of
(12...(k—c))-patterns, and combining any (12...c)-pattern in 77, with any (12... (k —c))-pattern
in Tr yields a (12... k)-pattern.

For each index a € [n], let 0, = [logy(n — a)]. Let Si(a),...,Sy,(a) C [n] be disjoint intervals
given by Sy(a) = [a+2'"1, a+2%)N[n]. The collection of intervals S(a) = (Si(a) : t € [1,]) partitions
the suffix (a,n] into intervals of geometrically increasing lengths (except possibly the last interval,

which may be shorter), and we refer to the collection S(a) as the growing suffix at a.

Definition 3.6. Let o, 5 € [0,1]. We say that an index a € [n] starts an (a, §)-growing suffix if,
when considering the collection of intervals S(a) = {Si(a) : t € [na]}, for each t € [ny] there is a
subset Di(a) C Si(a) of indices such that the following properties hold.

1. We have |D¢(a)|/|S¢(a)| < « for all t € [n,], and Zgil |D¢(a)|/|S¢(a)| > B.
2. For every t,t' € [n,] where t <t', if b € Di(a) and V' € Dy(a), then f(b) < f(b).

Intuitively, our parameter regime will correspond to the case when « is much smaller than (3,
specifically, a < f/poly(k), for a sufficiently large-degree polynomial in k. If a € [n] starts an
(o, B)-growing suffix with these parameters, then the 7, segments, Si(a),..., Sy, (a), contain many
monotone subsequences of length & which are algorithmically easy to find (given access to the start
a). Indeed, by (2), it suffices to find a k-tuple (i1, ...,1) such that iy € Dy,,...,i; € Dy, , for some
t1,...,tk € ) With t; < ... <t} (see Figure 3.2). By (1), the sum of densities is at least 3, yet
each density is less than a < 3/ poly(k). In other words, the densities of Dy (a),..., Dy, (a) within
Si(a),..., Sy, (a), respectively, must be spread out, which implies, intuitively, that there are many

ways to pick suitable i1, ..., k.

Definition 3.7. Let o, 3 € (0,1] and ¢ € [ko — 1]. Let I C [n] be an interval, let T C I* be a set

of disjoint, length-ky monotone subsequences of f lying in I, and define
7w = {(i1y...,ic) € I€: (i1,...,1ic) is a prefix of a ko-tuple in T}, and
TFE = {(jy,... s ko—e) € TFO7C (G1, .o Jro—e) i a suffiz of a ko-tuple in T'.
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Figure 3.2: Growing Suffixes. Depiction of an («a, §)-growing suffix at index a € [n] (see
Definition 3.6). The labeled segments S;(a) are shown, as well as the subsets D;(a). Notice
that for all j, all the elements in Dy(a) lie below those in Dyy1(a). In Section 3.4.2, we show
that if an algorithm knows that a starts an («, 8)-growing suffix, for « < 3/ poly(k), then
sampling poly(k)/f many random indices from each S;(a) finds a monotone pattern with

probability at least 0.9.

We say that the pair (I,T) is (c, o, §)-splittable if |T'|/|1]| > B; f(ic) < f(j1) for every (i1, ... i) €
7@ and (J1,- - Jko—c) € T - and there is a partition of I into three adjacent intervals L, M, R C
I (that appear in this order, from left to right) of size at least al|l|, satisfying T C L¢ and
T(R) C Rko—ec,

A collection of disjoint interval-tuple pairs (I1,T4),...,(Ils,Ts) is called a (c,a, 3)-splittable
collection of T' if each (I;,T}) is (c, o, 5)-splittable and the sets (T : j € [s]) partition T.

We now state the main theorem of this section, whose proof will be given in Section 3.3.5.

Theorem 3.8. Let k, kg € N be positive integers satisfying 1 < ko < k, and let 6 € (0,1) and
let C > 0. Let f:[n] = R be a function and let Ty C [n]* be a set of dn disjoint monotone
subsequences of f of length ko. Then there exists an o > Q(8/k°) such that at least one of the

following conditions holds.

1. FEither there exists a set H C [n], of indices that start an (o, Cka)-growing suffiz, satisfying
alH| > én/ poly(k,log(1/4)); or

2. There exists an integer ¢ with 1 < ¢ < ko, a set T, with E(T) C E(Ty), of disjoint length-kg
monotone subsequences, and a (c,1/(6k), a)-splittable collection of T', of disjoint interval-tuple
pairs (I, Th), . .., (Is,Ts), such that

- |To|
0" 1| > .
2\ = 5 To(i/0)
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(L)

Figure 3.3: Splittable Intervals. Depiction of a (¢, o, 3)-splittable interval, as defined in
Definition 3.7. The interval I is divided into three adjacent intervals, L, M, and R, and the
disjoint monotone sequences are divided so that T@) contains the indices (i1,...,1c) and
TR) contains the indices (ici1,...,ix). Furthermore, we have that every (i1, ...,i.) € T")
and (jei1,---,jx) € T have f(ic) < f(jer1), so that any monotone pattern of length c in
E(T™)) may be combined with any monotone pattern of length k — ¢ in E(T() to obtain

a monotone pattern of length & within 1.

We remark that the above theorem is stated with respect to the two parameters, kg and k,
for ease of applicability. In particular, in the next section, we will apply Theorem 3.8 multiple
times, and it will be convenient to have k be fixed and ky be a varying parameter. In that sense,
even though the monotone subsequences in question have length kg, the relevant parameters that
Theorem 3.8 lower bounds only depend on k.

Consider the following scenario: f: [n] — R is a sequence which is e-far from (12...k)-free, so
by Observation 3.2, there exists a set Ty of disjoint, length-k monotone subsequences of f of size at
least en/k. Suppose that upon applying Theorem 3.8 with kg = k and § = ¢/k, (2) holds. Then,
there exists a (c,1/(6k), «)-splittable collection of a large subset of disjoint, length-k monotone
subsequences T into disjoint interval-tuple pairs (I1,T4),...,(Is,Ts). For each h € [s], the pair
Iy, Tp) is (¢, 1/(6k), av)-splittable, so let I, = L, U M}, U Ry, be the left, middle, and right intervals
of Ij; furthermore, let T,EL) be the (12...c¢)-patterns in Lj which appear as prefixes of T}, and T,ER)
be the (12...(k — ¢))-patterns in Ry, which appear as suffixes of T}, in Rj. Thus, the restricted
function fiz,: Lp — R contains |T}| disjoint (12...c)-patterns, and fg, : Ry — R contains |T}|
disjoint (12...(k — ¢))-patterns. This naturally leads to a recursive application of Theorem 3.8 to
the function f|z, with kg = ¢, and to the function f|g, with ko =k — ¢, for all h € [s].

3.3.3 Tree Descriptors

We now introduce the notion of tree descriptors, which will summarize information about a function
f after applying Theorem 3.8 recursively. Then, we state the main structural result for functions

that are e-far from (12...k)-free. The goal is to say that every function which is e-far from
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(12...k)-free either has many growing suffixes, or there exists a tree descriptor which describes
the behavior of many disjoint, length-k monotone subsequences in the function. The following two
definitions make up the notion of a tree descriptor representing a function. Figure 3.4 shows an

example of Definitions 3.9 and 3.10.
Definition 3.9. Let kg € N and 6 € (0,1). A (ko, d)-weighted-tree is a pair (G, o), where

e G = (V,E,w) is a rooted binary tree with edges labeled by a function w: E — {0,1}. Every
non-leaf node has two outgoing edges, eg,e; with w(ey) =0 and w(e1) = 1. The set of leaves
Vi CV satisfies |Vy| = ko, and <¢ is the total order defined on the leaves by the values of w

on a root-to-leaf path.®

e 0: V —[[log(1/6)]] is a function that assigns a positive integer to each node of G.

In the next definition, we show how we use weighted trees to represent a function f and a set

of disjoint, length-ky monotone subsequences.

Definition 3.10. Let k, kg € N be such that 1 < kg < k, let « € (0,1), let I C N be an interval,
and let f: I — R be a function. Let T C I* be a set of disjoint monotone subsequences of f. A
triple (G, 0,1) is called a (k, ko, d)-tree descriptor? of (f,T,I), if (G, 0) is a (ko,d)-weighted tree, |
is a function |: V. — P(Z) (where V=V (G)), and the following recursive definition holds.

1. If kp=1 (soT C1I),

e The graph G = (V, E,w) is the rooted tree with one node, r, and no edges.
e The function o: V — [[log(1/6)]] (simply mapping one node) satisfies 2~ < |T|/|I] <
9—o(r)+1
o The map |: V — S(I) is given by I(r) = {{t} : t € T}.
2. If ko > 1,

e The graph G = (V, E,w) is a rooted binary tree with ko leaves. We refer to the root by r,
the left child of the root (namely, the child incident with the edge given 0 by w) by Vieft,
and the right child of the root (the child incident with the edge given 1) by viignt. Let ¢
be the number of leaves in the subtree of vVieft, 50 Vright has ko — ¢ leaves in its subtree.

o Write I(r) = {I1,...,Is}. Then I,...,I; are disjoint sub-intervals of I, and, setting
T; = (I)*oNT, the pairs (I, T1), . . ., (Is, Ts) form a (c,1/(6k), 279" -splittable collection

of T, and
S
T|
9—o(r) 1| > | )
hzl poly (k. log(1/4))*
8Specifically, for Il,la € Vi at depths di and da, with root to leaf paths (r,u®, ... w(@~Y 1)
and (r,v(l),...,v<d271>,lg), then Iy <¢ [l2 if and only if (w(r,u(l)),w(u(l),u<2>),...,w(u(dlfl),ll)) <
(w(r,v™), we®, v@), ... w®® Y 1)) in the natural partial order on {0,1}*.

9We shall sometimes refer to this as a ko-tree descriptor, in particular when k, § are not crucial to the discussion.
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o For each h € [s] there exists a partition (Lp, My, Ry) of Iy, that satisfies Definition 3.7,
such that the sets T}(LL), of prefizes of length ¢ of subsequences in Ty, and T,ER), of suffixes
of length ko — ¢ of subsequences in Ty, satisfy T,SL) C (Lp)¢ and T}(LR) C (Rp)ko—e,
Moreover, the following holds.

)

The tuple (Gleft, Oteft; In, 1eft) i a (k,c,d)-tree descriptor of f, T}EL , and Ly, where Geft

is the subtree rooted at Vief, Oleft 5 the restriction of o to the subtree Gie, and lp et is
defined by I 1efe(v) :={J € l(v): J C Ly} for all v € Gie.
Analogously, the tuple (Gright, Orights In, right) s a (k, ko — ¢, §)-tree descriptor of f, T}gR),
and Ry, where Glight, Oright, |h, right are defined analogously.

We remark that it is not the case that for every function f: I — R defined on an interval
I, and for every T' C I*0 which is a set of disjoint, length-ky monotone subsequences of f, there
must exist a ko-tree descriptor which represents (f,T,I). The goal will be to apply Theorem 3.8
recursively whenever we are in (2), and to find a sufficiently large set T" of disjoint length-k monotone

subsequences, as well as a k-tree descriptor which represents (f, T, I).

3.3.4 The Structural Dichotomy Theorem

We are now in a position to state the main structural theorem of far-from-(12... k)-free sequences,
which guarantees that every far-from-(12... k)-free sequence either has many growing suffixes, or
can be represented by a tree descriptor. The algorithm for finding a (12. .. k)-pattern will proceed
by considering the two cases independently. The first case, when a sequence has many growing
suffixes, is easy for algorithms; we will give a straight-forward sampling algorithm making roughly
Or(logn/e) queries. The second case, when a sequence is represented by a tree descriptor is the

“hard” case for the algorithm.

Theorem 3.11 (Main structural result). Let k € N, ¢ > 0, and let f: [n] = R be a function which
is e-far from (12...k)-free. Then one of the following holds, where C > 0 is a large constant.

e There exists a parameter a > ¢/ poly(k,log(1/¢))¥, and a set H C [n] of indices which start
an (o, Cka)-growing suffiz, with
en
poly(k, log(1/e))*’

e or there exists a set T C [n]F of disjoint monotone subsequences of f satisfying

7| > = .
poly(k, log(1/¢))k

and a (k, k, B)-tree descriptor (G, o,1) representing (f, T, [n]) where 3 > ¢/ poly(k, log(l/e))kz.

alH| >

Proof. We shall prove the following claim, by induction, for all ky € [k]. Here C > 0 is a large
constant, and C’ > 0 is a large enough constant such that a > §/(C’'k®) in the statement of
Theorem 3.8, applied with the constant C'.
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Figure 3.4: Tree Descriptors. Depiction of a tree descriptor (G, g, 1) representing (f,T,1),
as described in Definitions 3.9 and 3.10. The graph G displayed above is a rooted tree with
four leaves, which are ordered and labeled left-to-right. The root node r, filled in black,
has its corresponding intervals from I(r) shown below the sequence as three black intervals.
Each of the black intervals in I(r) is a (2, «, 3)-splittable interval, for « ~ 1/3 and 5 > 1/6.
Then, the root has the left child vy, filled in red, and the right child vy, filled in blue. The red
intervals are those belonging to I(vg), and the blue intervals are those belonging to I(v1). Each
black interval in I(7) has a left part, which contains intervals in [(vg), and a right part, which
contains intervals in I(v1). The red and blue intervals in 1(vg) and I(v1) are also (1, «, 3)-
splittable, and the left part of the red intervals contains indices which will form the 1 in the
monotone pattern of length 4, and the right part of the red intervals contains indices which
will form the 2. Likewise, the left part of blue intervals will contain the indices corresponding
to 3, and the right part of the blue intervals will contain indices corresponding to 4. The
regions where the indices from T lie are shown above the sequence, where the indices 1-4 of
some monotone pattern in 1" lie in regions which are progressively darker. In order to see how
a monotone subsequence may be sampled given that (G, ¢,1) is a tree descriptor for (f, T, 1)
with sufficiently large T', consider indices i1 and js that belong to some subsequences from
T, and lie in different shaded regions of the same red interval, within a black interval; and
furthermore, I3 and h4 belong to some subsequence from 7', and lie in different shaded regions
of the same blue interval, within the same black interval as i1 and jo; then, the subsequence
(i1, j2,13, hg) is a monotone subsequence even though (i1, jo,l3,hs) ¢ T
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Claim. Let K = C'k® and let P(-,-) be the function from the statement of Theorem 3.8; so
P(z,y) = poly(z,logy), and we may assume that P is increasing in both variables. Let
A(+,-) and B(-,-) be increasing functions, such that

A(ko,1/8) > 12k[log(K* /8)] - P(k,1/5) - A(ko — 1, K/9)

A(1,1/6)=1/6 (3.4)

Blko,1/8) > 2- P(k, K/6) - (2K[log(K B(ko — 1, K/8)/5))% - Blko — 1, K/8)
B(1,1/6) =1/

Note that there exists such A(-,-) and B(-,-) with A(k,1/6) = (poly(k,log(1/6)))* and

B(k,1/6) = (poly(k,log(1/8)))*".

Let I C N be an interval, let g be a sequence g: I — R, let Ty C I* be a set of disjoint

length-ky monotone subsequences, and define 6 := |Tp|/|I|. Then

1. Either there exists a > 6/K*0, which is an integer power of 1/2, along with a set H C I
of (o, Cka)-growing suffix start points such that

51
> =0
M = Fo 178y

2. Or there exists a set T' C I* of disjoint ko-tuples satisfying E(T) C E(Tp) and

|To|
TN > —1—2
12 B, 178)

and a (k, ko, a)-tree descriptor (G, o,1) for (g,T,I), where o > 6/B(ko, 1/6).
Note that since f is e-far from (12...k)-free, there is a set Ty C [n]¥ of at least en/k disjoint

length-k£ monotone subsequences. By applying the above claim for ky = k, Ty, [n] and f, the

theorem follows. Thus, it remains to prove the claim; we proceed by induction.

if ko = 1: Note that here T is a subset of I. We define the (k,1,0)-tree descriptor (G, g,1) which
represents f,T = Tpy, I in the natural way:

e G = (V,E) is a rooted tree with one node: V = {r} and E = (.
e 0: V = Nis given by o(r) = [log(1/6)], so 27 < |1 NT|/|I| <272+,
o 11V — S(I)is given by I(r) = {{t} : t € T'}.

if 2 < kp < k: By Theorem 3.8, there exists « > d/K such that one of (1) and (2), from the

statement of the theorem, holds.

o If (1) holds, there is a set H C I of (o, Cka)-growing suffix start points with

o|1]
H| > :
olH| = P(k,1/8)’
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note that we may assume that « is an integer power of 1/2.1°

e Otherwise, (2) holds, and we are given an integer ¢ € [ko—1], a set T of disjoint length-kg
monotone subsequences, with E(T) C E(Ty), and a (¢, 1/(6k), «)-splittable collection of
T into disjoint interval-tuple pairs (I1,71), ..., (Is,Ts), such that

3 T o1
1| > = .
2= 51757 = Pk, 170

Recall that by definition of splittability, |13|/|Ix| > « for every h € [s].

If (1) holds, we are done; so we assume that (2) holds.

For each h € [s], since (Ip,T}) is a (c,1/(6k), «)-splittable pair, there exists a partition
(Lp, My, Ry,) that satisfies the conditions stated in Definition 3.7. Let T,EL) be the collection
of prefixes of length ¢ of subsequences in T}, and let T,(LR) be the collection of suffixes of length
ko — ¢ of subsequences in T},.

We apply the induction hypothesis to each of the pairs (L, T}EL)) and (Rp, T}ER)). We consider

two cases for each h € [s].

1. (1) holds for either (Lh,T,SL) ) or (Rh,T,ER)). This means that there exists [}, which is
an integer power of 1/2, and which satisfies 3, > o/ K™{eko—c}t > o /[ko=1 > 5/ ko,
and a set Hj C Iy, of start points of (3, Ckfp)-growing subsequences, such that (using

|Rpl, |Ln| > |In]/(6k))
allp|
6k - Alko — 1,1/a)

Br|Hp| >

2. Otherwise, (2) holds for both (Lh,T,EL)) and (Rh,T,ER)). Setting 8 = a/B(ko — 1,1/a),
this means that there exists a (k, ¢, 3)-tree descriptor (GgL), QSLL), IﬁlL)), for (g,Ln, Lp)
where £, C (Lp)€ is a set of length-¢ monotone subsequences, such that F(Ly) C E (T}(LL))

and
i

Ll > h
|h|_B

(ho— L 1/a) (3:5)

and, similarly, there exists a (k, kg — ¢, 3)-tree descriptor (G,(LR), Q,(lR), |§LR)) for (g, Ry, Ln),

where Ry, C (Rp)*~¢ is a set of length-(ky — ¢) monotone subsequences, such that
E(Ry) € E(T™) and

73"
Ry 2 =——F+———. 3.6
Rl = B(ko— 1,1/a) (36)
For convenience, we shall assume that |£;,| = |Rp|, by possibly removing some elements

of the largest of the two (and reflecting this in the corresponding tree descriptor).

1046 be precise and to ensure that we can take « to be an integer power of 2, it might be better to apply Theorem 3.8

with constant 2C, to allow for some slack; this does not change the argument.
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Suppose first that
1 s
)DITARE S il
h: first case holds for A h=1

Since each By, is an integer power of 1/2, there are at most [log(K*0/5)] possible values for
Bh. Hence, there exists some (3 (with 8 > §/K*0) such that the collection S, of indices h € [s]
for which the first case holds for h and 8, = [, satisfies

> nl > o7 KkO/d Z|Ih|
hes
Let H = {Jpcg Hp- Then H is a set of start points of (3, Ckf3)-growing suffixes, with

s

11|

2 Gty 17) 22 o oa R T AR 1/ 2

h=1
. o1 Ll
= 12k[log(Kk0/8)] - P(k, 1/6) - A(ko — 1,1/a) — A(ko,1/6)’

where the last inequality follows from (3.4). This proves the claim in this case.

Next, we may assume that

S
> RS Al
h=1

h: second case holds for h

Note that the number of quadruples (GEZL), QELL), G(R), géR)) (whose elements are as above) is

at most (2¢)2°(2(ko — ¢))2*0=9) ([log(1/8)])%%° < (2k[log(1/5)])?*0, since the number of trees
on [ vertices is at most I', and we have at most [log(1/3)] possible weights to assign to each
of the vertices. It follows that there exists such a quadruple (G7, 0}, G}, 0F) such that if S

is the set of indices h that were assigned this quadruple, then

(6%
S IE >l
hes (2k ﬂOg(l/ﬁﬂ) ’ second case holds for h (3 7)
o |To| '

> @hfloa( /8™ 2= = 5Pk 1737 (o log(1 /8T

We form a set Tj, of monotone length-ky subsequences by matching elements from L£; with
elements from Ry, for each h € S; that they can be matched follows from the assumption that
|Ln| = |Rp|, and that these form monotone subsequences follows from the assumptions on
L, Rp. Set T := UpesTn. Note that (I, Tr) is (ko, ¢, §)-splittable by (3.5) and (3.6) (using
B =a/B(ky—1,1/a)). Let (G, o) be the (k, ko, 3)-weighted-tree obtained by taking a root r,
with weight o(r) = [log(1/8)], adding the tree (G, ¢0*) as a subtree to its left (i.e., the root
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of this tree is joined to r by an edge with value 0) and adding the tree (G%, 0*) as a subtree
to its right. Now, we form a (G, g, I)-tree descriptor by setting

{In:heS} v=r
(0) = ¢ Unesl (v) vea;
Unes IEIR)(U) v e Gy

We claim that (G, p,1) is a (k, ko, 3)-tree descriptor for (g,7T,I). Indeed, ((In, Th))res is a
(¢,1/(6k),2-2"))-splittable collection of 7, and, by (3.7) and because |Tp| > |T|

7] 7]

9—ae(r) }; |I,| > 5 }% |Ip,| > 4-P(k,1/6)- (Qk(log(l/ﬁﬂ)zko - poly(k,log(1/5))k.

The remaining requirements in the recursive definition of a tree descriptor (see Definition 3.10)
follow as (G7, 0*, IEZL)) is a (k, ¢, B)-tree descriptor for (g, Ly, Ly,) and (G, 0*, IgR)) isa (k,ko—
¢, B)-tree descriptor for (g, Ry, Ry) for every h € S. Since 5 = o/ B(ko—1,1/a) > §/B(ko, 1/9),
it follows that (G, o,1) is a (k, ko, d/B(ko, 1/0))-tree descriptor for (g, 7, I).

It remains to lower-bound the size of 7. Using (3.6) and (3.7), we have

1 o
TI=> Rul> 57—~ Thl > 57—~ 4
hzes Blko — 1,1/a) hzes Blko — 1,1/a) hzes
|To| |To|

= 2 Pk, 1/0) - (2k[log(1/B))% - Blko —1,1/a) = B(ko,1/8)’

This completes the proof of the inductive claim in this case. O

3.3.5 Proof of Structural Dichotomy Theorem

We now prove Theorem 3.8. For the rest of this section, let k, kg € N, with 1 < ky < k, be fixed,
and let f: [n] - R be a fixed function. Let Ty be a set of dn disjoint monotone subsequences of
f of length ky. We apply Lemma 3.5 to the set Tp; this specifies an integer ¢ € [kg — 1] and a

subset T of at least dn/k? disjoint monotone subsequences of length kg satisfying the conclusion of

Lemma 3.5.
Definition 3.12. Let (iy,...,ix,) € [n]* be a monotone subsequence with a c-gap. We say that
(i1,...,ik,) is at scale t if 28 <i.q —i. < 201 where t € {0, ..., |logn|}.

Definition 3.13. Let (i1, ...,iy,) € [n]* be a monotone subsequence with a c-gap. For vy € (0,1),
we say that ¢ € [n] vy-cuts (i1,...,ik,) at ¢ with slack if

ie+ 7(i0+1 - ic) <l <liey1 — 7(i0+1 - iC)' (3'8)
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We hereafter consider the parameter setting of v := 1/3. For £ € [n], t € {0,...,|logn]}, and
any subset U C T of disjoint (12... kg)-patterns in f let

A6, U) = {(i1,..-,0k,) € U : (i1,...,ix,) is at scale t and is y-cut at ¢ with slack by ¢}. (3.9)

We note that for each (i1, ...,ix,) € A¢(¢,U), the index i.y1 is in [¢, £+ 2!71], and since A(£,U) is

made of disjoint monotone sequences, |A;(¢,U)| < 21+1
Lemma 3.14. For every £ € [n], t € {0,...,|logn]|}, and U C T,
o Every (i1,...,ig,) € At(¢,U) satisfies

00— (k=12 <y, i < 00— 428 0428 <lierny ey ing <O+ (B —1)20

o Letty >to+1+1log(l/y) +log(c+1), (i1,...,ik) € Ay, (¢, U) and (ji1,- .., k) € At, (L, U).
Then f(jet1) < f(iet1)-

Proof. Fix any ¢ € [n], t € {0,...,[logn]} and U C T. To establish the first bullet, consider any
(i1,...,1k,) € Ai(£,U). By definition of a c-gap sequence, we have

iy > dey1 — Clicr1 —ic) 2 € — (k—1)2"F,

using iey1 — i < 211 and i1 > £. By (3.8), we have i, < £ — 42! (using .1 — i, > 2%). The first
inequality follows as i1 < --- < i.. The inequality for i.41,...,, follows similarly.

For the second bullet, let (i1,...,ix,) € A, (¢,U) and (j1, ..., Jk,) € At,(¢,U) and suppose that
2t > 2t . (¢ 4+ 1)/y. We have i, < £ —~2% and j. > ¢ — 2271 (using (3.8) and (3.9)), from
which it follows that j. > .. Similarly, i; < 4. < £ —~2% and j; > £ — (c — 1)22+!, implying that
g1 > i1, and depq > £+ 428 and jepq < £+ 202F1 which implies that .41 > jey1. The inequality
f(Jer1) < f(icq1) follows from the assumption that T satisfies (3) from Lemma 3.5. O

The proof of Theorem 3.8 follows by considering a random £ ~ [n] and the collection of sets
A1(£,T), ..., Ajlogn) (€, T). By looking at how the sizes of the sets A1(£,T),..., Alogn—1(¢,T) vary,
we will be able to say that £ is the start of a growing suffix, or identify a splittable interval. Towards
this goal, we first establish a simple lemma; here v(¢,U) is defined to be ZtU:()g nl | Ay (0, U)|/2.

Lemma 3.15. Let U C T be any subset and € ~ [n] be sampled uniformly at random. Then

U]
E vU) > .
2~[n) &0) 3n
Proof. Fix a sequence i = (i1,...,1g,) € U, and let ¢(i) € {0,..., [logn]|} be its scale. Then, the

probability (over a uniformly random £ in [n]) that i belongs to A;)(€,U) is lower bounded as

oot ot
Pr [i € Ay (£,U)] > (1—27)279 _ 2

£~[n] n 3n
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Therefore, Y 18"~ 'S e 1(i)=t Pre~mli € A¢(€,U)]/2" > [U|/(3n), or, equivalently, since Pryj,[i €
A6, 1)) = 0 for ¢ # 1(1),

logn—1

logn—1
|A(6,U 1{ie At U)} U]
E —_— > —,
£5[n) ; 2t ZN[n] tzg ZGZU 3n
establishing the lemma. ]

We next establish an auxiliary lemma that we will use in order to find growing suffixes.

Lemma 3.16. Let £ € [n] and U C T be such that everyt € {0, ..., |logn|} satisfies |A;(¢,U)|/2¢ <
B. Then, if £ € [n] is any index satisfying

max{ic : (i1,...,ik) € At(L,U),t € {0,..., [logn]} < ¢ < ¢, (3.10)
then ¢’ is the start of an (46,v(¢,U)/(12logk))-growing suffiz.

Proof. Let A =1+1log(1/7v)+ log(c+ 1), and notice that 3 < A < 3logk. Then, there exists a set
T C{0,...,|logn]|} such that

1. All distinct ¢,¢' € T satisfy |t — /| > A; and,

\At(ﬁ U)| logn—1 |At(€ U)| _ v(,U)
2. ZtET - A+1 Z - TAF1

(Such a set exists by an averaging argument.) Now, consider the sets

{ic+1 : (il,...,iko) EA%E,U)} ifteT

D () =
) 0 ift€{0,...,|logn|}\T.

Considering any ¢' € [n] satisfying (3.10), we have the following for all ¢t € {0,..., |logn]|} with
Dy() # 0: £ =21 < ¢ < 4; min Dy(f) > ¢+ 2t/3; and max Dy(¢) < ¢ + 2!T1. Therefore,
Di(€) C Se—1(¢) U S¢(¢') U Sp1(¢). (Recall that Si(a) = [a + 287 1,a + 2).) For each t € T,
let n(t) € {t — 1,t,t 4 1} satisfying [Dy(€) N Sy ()] > |De(£)[/3, and notice that all n(t) €
{0,...,|logn]} are distinct since A > 3.

The first condition in Definition 3.6 holds as the densities of Dy(£)N.S,;)(¢') in the corresponding
intervals S, (¢') are upper bounded by [Dy(£)]/]S,w ()] < [Ai(£,U)]/2"72 < 48, and the sum of

these densities satisfies

> D) 0 Sy ()] > 1D:(6)] > (A U)| o (6, U)
= S T& 32t 2 3.20 T 3(A+)

which is at least v(¢,U)/(12log k). The second condition in Definition 3.6 holds, because for any
choice of b € D(¢),t/ € Dy(¢) with t < ¢/, we have t > t + A (by the choice of T), and hence
f(b) < f(V') by the second item of Lemma 3.14. O
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Lemma 3.17. For every n > 0, there exists a subset U C T such that every (i1,...,ik,) € U has
ic as the start of an (1,n)-growing suffiz, and every £ € [n] satisfies v(¢, T\ U) < 12nlog(k).

Proof. Define sets Uj, elements ¢;, and ko-tuples (i1, ...,%;k,) recursively as follows. Set Uy := 0,
and given a set U;j_1, if v(¢,T \ Uj—1) < 12nlogk for every £ € [n], stop; otherwise, let ¢; € [n] be
such that v(¢;, T\ U;) > 12nlogk and define U; = Uj_1 U {(4j,1,.-.,%jk,)}, where

ij,c = max{ic: (i1,...,1y,) € T\ Uj and (i1,...,1i,) is y-cut by ¢;}.

Let j* be the maximum j for which U; was defined, and set U := Uj;+. Every ko-tuple in U is
of the form (ij1,...,4x,) for some j < j*. By Lemma 3.16, applied with ¢ = ¢;, U = T\ U;_1,
ij.c, it follows that i;. is the start of an (1, n)-growing suffix, for every j for which U; was defined.
Lemma 3.17 follows. O

We let C' > 0 be a large enough constant. Let U C T be the set obtained from Lemma 3.17 with
n = Ck, and suppose that |[U| > |T'|/2. Then, we may let « =1 and H = {i. : (i1,...,i%,) € U}.
Notice that every index in H is the start of an (a, Cka)-growing suffix, and since |H| > |T'/2,
we obtain the first item in Theorem 3.8. Suppose then, that |U| < |T|/2, and consider the set
V =T\ U. By definition of V, we now have v(¢,V) < 12Cklogk for every ¢ € [n]. Let by be
the largest integer which satisfies 2% < 12Cklogk and b; be the smallest integer which satisfies
2701 < §/(12k?), so 2b0 < 201 < k2 /5. For —by < j < by, consider the pairwise-disjoint sets

Bj={ten]:277 <o, V) <2771}, (3.11)

and note that by Lemma 3.15, since |V| > |T|/2 > on/2k?,

1 & 1 5
| .o—i+l _ _
E,E: |B;|- 277 ZnZv(ﬁ,V)EGkQ.
j=—bo Le(n]

Thus, denoting
4] 0
P 6k2(0, + b0+ 1) k2log(k/9)’

there is an integer —by < j* < by that satisfies

|Bj«|- 279" > pn. (3.12)

Lemma 3.18. There exists a deterministic algorithm, GreedyDisjointIntervals(f, B,j), which
takes three inputs: a function f: [n] — R, a set B C [n] of integers, and an integer j € [—by,b1],
and outputs a collection T of interval-tuple pairs or a subset H C B. An execution of the algorithm
GreedyDisjointIntervals(f, Bj-,j*) where p, B« and j* are defined in (3.12), satisfies one of

the following two conditions, where C' > 0 is a large constant.

e The algorithm returns a set H C B of indices that start a (4-277" /(Cklogk),277" /(12logk))-
growing suffiz, and |H| > 27" un; or
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e The algorithm returns a (c,1/(6k),277" /(8Ck? log k))-splittable collection (I, T1), ..., (Is, Ts),
where Y5 _y |Tn] > 27" 2 un.

Subroutine GreedyDisjointIntervals(f, B, j)

Input: A function f: [n] — R, a set B C [n] and an integer j, such that every ¢ € B satisfies
277 <w(l, V) <279t
Output: a set of disjoint intervals-tuple pairs (I1,71), ..., (Is,Ts) or a subset H C B.

1. Let Z be a collection of interval-tuple pairs, which is initially empty.

2. Consider the map ¢: B — {0,...,[logn]|} U{L} defined by

A »
1 vt €{0,...,|logn]}, | t(;{v)‘ < C,?lojgk

= »
att) { max {t: |At(2€’v)| > lelojgk} otherwise

w

. Let H={¢ € B:q(¢) =1}, and return H if |H| > |B|/2.
4. Otherwise, let D <— B\ H and repeat the following until D = {):

e Pick any ¢ € D where ¢(¢) = maxpep q(¢'), and let t = ¢(¥£).

o Let [ < [(— k2L 0+ k2 N [n] and T < A.(¢,V).

e Obtain 7" from T as follows: find a value v such that at least |77|/2 of tuples
(i1,...,ik,) € T" satisfy f(i.) < v, and at least |T"|/2 of tuples (i1,...,ix,) € T'
satisfy f(ic+1) > v (v could be taken to be the median of the multiset {f(i.) :
(1,...,1k,) € T"}). Recombine these prefixes and suffixes (matching them in one-

to-one correspondence) to obtain a set of disjoint ko-tuples 7" of size |T"| > |T"|/2.

e Append (I,T") to Z, and let D < D\ [{ — 2 - k211 ¢ 4 2. k211,

5. return 7.

Figure 3.5: Description of the GreedyDisjointIntervals subroutine.

Proof. 1t is clear that the algorithm always terminates, and outputs either a collection Z of interval-
tuple pairs or a subset H C B. Suppose that the input of the algorithm, (f, Bj«, j*), satisfies (3.12),

and consider the two possible types of outputs.

If the algorithm returns a set H C Bj« (in step 3), then we have |H| > ‘Lgl > 127" un (the second
inequality by (3.12)). (To see why the elements of H start (4-277"/(Cklogk),277" /(12logk))-

growing suffixes (Definition 3.6), notice that we may apply Lemma 3.16 with ¢/ = ¢ and § =
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277" /(Cklogk).)

If, instead, the algorithm returns a collection Z = ((Ip,,T},) : h € [s]) in step 5, we have that, by

construction, each T}, is obtained from a set T} = A;(¢, V') for some ¢ with ¢(¢) # L. Consequently,
for all h € [s] we have

Thl o 1Tl A&Vl 1 277

In| = 21, = 4k - 20041 = 8k Cklogk'

(3.13)

(from the definition of ¢(¢)). To argue that Y, _, |I5| is large, observe that, since we did not output
the set H, we must have had |D| > |Bj«|/2. Since, when adding (I}, T}) (corresponding to some
() to T we remove at most 4k29)0F1 = 2|I;,| elements from D, in order to obtain an empty set D
/4, which is at least 27" un/4 by (3.12). Moreover,
the sets Iy, are disjoint: this is because of our choice of maximal ¢(¢) in step 4, which ensures
that after removing [¢ — 2k29(0+1 ¢ 4 2£29)+1] in step 4 there cannot remain any ¢ € D with
[0 — 20+ ¢ 4 k20 A 1y £ 0.

Thus, it remains to prove that Z is a (¢, 1/(6k), 277" /(8Ck?log k))-splittable collection. To do
so, consider any (I, Ty) € Z. The first condition in Definition 3.7 of splittable pairs, namely that
|Tw|/|In] > 277" /(8Ck?log k) holds due to (3.13). Recalling step 4, we have Ij, = [(—k2!F1 (4 k201
for some ¢, where ¢t = ¢(¢), and T}, obtained from T; = A(¢, V). Set

and reach step 5 we must have Y, _, |I,| > | Bj-

Ly = [0 — k2 0 —~2Y, My = (0 — 4250 ++42Y), Ry = [0 +~2", 0+ k2!,

This is a partition of I into three adjacent intervals whose size is at least |Ij,|/(6k) (recall that
v = 1/3). Moreover, for every (i,...,ik,) € T}, the c-prefix (i1,...,i.) is in (Lp)¢ while the
(ko — ¢)-suffix (ici1,...,7k,) is in (Rp)*~¢, by the first item of Lemma 3.14. Since T}, is obtained
from a subset of these very prefixes and suffices, the conclusion holds for T} as well. Moreover,
our construction of T}, from 7T} guarantees that the last requirement in Definition 3.7 holds: for
every prefix (i1,...,4.) of a tuple in T}, and suffix (ji, ..., jk,—c) of a tuple in T}, we have f(i.) <
f(j1). This shows that (Iy,T}) is (c,1/(6k), 277" /(8Ck?log k))-splittable, and overall that T is a
(¢,1/(6k), 277" /(8Ck?log k))-splittable collection as claimed. O

Theorem 3.8 follows by executing GreedyDisjointIntervals(f, Bj«,j*). If the algorithm out-
puts aset H C Bj«, set @ = 4-277" /(Cklog k), so we have identified a subset H of (a, C'ak)-growing
suffixes (where C" = (C'/48) satisfying a|H| > dn/ poly(k,log(1/5)) = |To|/ poly(k,log(1/6)) (using
the definition of u before (3.12)). Otherwise, set a = 277 /(8Ck?logk), and the algorithm out-
puts a (c, 1/(6k), a)-splittable collection {(I1,T1),..., (I, Ts)} of the set T" := Upe(qTh. Clearly,
E(T'") C E(T), and moreover, o>y _; |Is| > dn/poly(k,log(1/d)) = |To|/ poly(k,log(1/4)). In
fact, 277" = Q(§/k?) and so a > Q(6/(k*logk)).
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3.4 The Algorithm

3.4.1 High-level Plan

We now present the non-adaptive algorithm for finding monotone subsequences of length k.

Theorem 3.19. Consider any fived value of k € N. There exists a non-adaptive and randomized
algorithm, Sampler,(f,e), which takes two inputs: query access to a function f: [n] — R and a
parameter € > 0. If f is e-far from (12...k)-free, then Sampler,(f,e) finds a (12...k)-pattern
with probability at least 9/10. The query complexity of Sampler,(f,e) is at most

1 /loon [logy k]
S(PER) T polyltos/e).

The particular dependence on k and log(1/¢) obtained from Theorem 3.19 is on the order of
(klog(1/2))°**) . The algorithm is divided into two cases, corresponding to the two outcomes
from an application of Theorem 3.11. Suppose f: [n] — R is a function which is e-far from being

(12...k)-free. By Theorem 3.11 one of the following holds, where C' > 0 is a large constant.

Case 1: there exist @ > ¢/polylog(1/e) and a set H C [n] of (a, Cka)-growing suffixes where
a|H| > en/polylog(1/e), or

Case 2: there exist a set T C [n]* of disjoint, length-k monotone sequences, that satisfies |T| >

en/(polylog(1l/¢e)), and a k-tree descriptor (G, g,1) which represents (f, T, [n]).

Theorem 3.19 follows from analyzing the two cases independently, and designing an algorithm for

each.

Lemma 3.20 (Case 1). Consider any fized value of k € N, and let C > 0 be a large enough
constant. There ezists a non-adaptive and randomized algorithm, Sample-Suffix,(f,e) which
takes two inputs: query access to a function f: [n] — R and a parameter e > 0. Suppose there exist
a € (0,1) and a set H C [n] of (o, Cka)-growing suffizes satisfying o|H| > en/polylog(1/¢),!! then
Sample-Suffix,(f,e) finds a length-k monotone subsequence of f with probability at least 9/10.
The query complezity of Sample-Suffix,(f,e) is at most

logn

—— - polylog(1/e).

€
Lemma 3.20 above, which corresponds to the first case of Theorem 3.11, is proved in Sec-

tion 3.4.2.

"Here we think of k as fixed, so polylog(1/e) is allowed to depend on k. In this lemma, the expression stands for
(klog(1/e))".
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Lemma 3.21 (Case 2). Consider any fized value of k € N. There exists a non-adaptive, ran-
domized algorithm, Sample-Splittable,(f,e) which takes two inputs: query access to a sequence
f:[n] = R and a parameter ¢ > 0. Suppose there exists a set T C [n]*¥ of disjoint, length-k
monotone subsequences of f where |T| > en/polylog(1/e),'? as well as a (k,k,a)-tree descriptor
(G, 0,1) that represents (f,T,[n]), where o > €/polylog(1/e), then Sample-Splittable,(f,e) finds
a length-k monotone subsequence of f with probability at least 9/10. The query complexity of
Sample-Splittable,(f,e) is at most

1 logn [logs k]
5( 6 > - polylog(1/e).

Proof of Theorem 3.19 assuming Lemmas 3.20 and 3.21. The algorithm Sampler;(f,e) executes
both Sample-Suffix,(f,c) and Sample-Splittable,(f,¢); if either algorithm finds a length-k
monotone subsequence of f, output such a subsequence. We note that by Theorem 3.11, either
case 1, or case 2 holds. If case 1 holds, then by Lemma 3.20, Sample-Suffix(f,e) outputs a length-
k monotone subsequence with probability at least 9/10, and if case 2 holds, then by Lemma 3.21,
Sample-Splittable,(f,e) outputs a length-k monotone subsequence with probability at least 9/10.
Thus, regardless of which case holds, a length-k monotone subsequence will be found with prob-
ability at least 9/10. The query complexity then follows from the maximum of the two query

complexities. ]

3.4.2 Proof of Lemma 3.20: An Algorithm for Growing Suffixes

We now prove Lemma 3.20. Let C' > 0 be a large constant, and let k¥ € IN be fixed. Let € > 0 and
f: [n] = R be a function which is e-far from (12...k)-free. Furthermore, as per the assumption of
case 1 of the algorithm, we assume that there exists a parameter o € (0,1) as well as a set H C [n]
of (e, Ckar)-growing suffixes, where a|H| > en/polylog(1/e).

The algorithm, which underlies the result of Lemma 3.20, proceeds by sampling uniformly at
random an index a ~ [n], and running a sub-routine which we call Growing-Suffix, with a as
input. The sub-routine is designed so that if a is the start of an («, Ck«)-growing suffix then the
algorithm will find a length-k£ monotone subsequence of f with probability at least 99/100. The

sub-routine, Growing-Suffix, is presented in Figure 3.6.

Lemma 3.22. Let f: [n] — R be a function, let o, g, 5 € (0, 1) be parameters satisfying 5 > Cka
and ag < «, and suppose that a € [n] starts a (a, B)-growing suffix in f. Then the procedure
Growing-Suffix(f, ap,a) finds a (12...k)-copy in f with probability at least 99/100.

Proof. Recall, from Definition 3.6, that if a € [n] is the start of a («, 5)-growing suffix of f then

there exist a collection of sets, Di(a), ..., Dy, (a) and parameters 61(a),...,dy,(a) € (0, ], where

2in this case the polylog(1/e) term stands for (klog(l/s))o(kZ)

80



Subroutine Growing-Suffix (f, ap,a)

Input: Query access to a function f: [n] — R, a parameter ap € (0,1), and an index a € [n].
Output: a subset of k indices i1 < --- < iy where f(i1) < --- < f(ig), or fail.

1. Let n, = [log(n—a)] and consider the sets S;(a) = (a+¥¢;—1,a+£¢;]N[n] for all j € [n,]
and ¢; = 27.

2. For each j € [n,], let A; C Sj(a) be obtained by sampling uniformly at random 7" :=
1/ag times from Sj(a).

3. For each j € [n,] and each b € Aj, query f(b) .

4. If there exist indices i1,...,9 € Aj U--- U A,, satisfying i1 < -+ < iy and f(i1) <

.-+ < f(ig), return such indices i1, ..., i;. Otherwise, return fail.

Figure 3.6: Description of the Growing-Suffix subroutine.

every j € [n,] has
Na
Dj(a) C Sj(a),  |Dj(a)| =d;(a)-|S;(a)l,  and > 4;(a) = B.
j=1

Further, if, for some ji,...,Jjr € [n], we have j; < --- < jy and for all £ € [k], Aj, N Dj,(a) # 0,
then the union Dj (a) U...U Dj, (a) contains a length-k monotone subsequence. In view of this,

for each j € [ng], consider the indicator random variable
E; = ind{Aj NDj(a) # 0},

and observe that by the foregoing discussion Growing-Suffix(f, ap, a) samples a length-k£ monotone
subsequence of f whenever Z?‘;l E; > k. We note that the E;’s are independent, and that

. [T-6i(a) 1
T j
_— i —_ _— . > —_— — .
PrlE;=1]=1-(1-4;(a)) _mln{ 10 ,10}
Let J C [n4] be the set of indices satisfying T"- ¢;(a) > 1 (recall that T'=1/ag). Then, if |J| > Ck
we have
Tl
Ck
E E E;| >—

~ 10

since every variable j € J contributes at least 1/10. On the other hand, if |J| < Ck/2, then, since
dj(a) < a for every j, we have } ;1\ y05(a) = 8 —|J|- o > B/2 (using § > Cka) so that

Na
T 8 _ Ck
> > D> 2
S DA EE I Sl S
Jj=1 JE€Ma\J
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In either case, E[>_;cp,.1 Ej] = CF/20, and since the events E; are independent, via a Chernoff
bound we obtain that }_; E; is larger than k with probability at least 99/100. O

Subroutine Sample-Suffix; (f,¢)

Input: Query access to a function f: [n] — R, and a parameter ¢ € (0,1).
Output: a subset of k indices i1 < --- < iy where f(i1) < --- < f(ig), or fail.

1. Repeat the following for all j = 1,...,0(log(1/¢)), letting a; = 277:

e For t; = a; - polylog(1/e)/e iterations, sample a ~ [n] uniformly at random and
run Growing-Suffix(f, a;,a), and if it returns a length-£ monotone subsequence

of f, return that subsequence.

2. If the algorithm has not already output a monotone subsequence, return fail.

Figure 3.7: Description of the Sample-Suffix subroutine.
With this in hand, we can now establish Lemma 3.20.

Proof of Lemma 3.20. First, note that the query complexity of Sample-Suffix,(f,¢) is

O(log(1/¢))

log n - polylog(1/e

Jj=1

Consider the iteration of j where o;j < a < 2a; (note that since a > ¢/polylog(1/¢), there exists
such j). Then, since |H| > ¢/(« - polylog(1/¢)), we have that t; > Cn/|H| (for a sufficiently large
constant C'). Thus, with probability at least 99/100, some iteration satisfies a € H. When this
occurs, Growing-Suffix(f, a;,a) will output a length-k monotone subsequence with probability
at least 99/100, by Lemma 3.22, and thus by a union bound we obtain the desired result. O

3.4.3 Proof of Lemma 3.21: An Algorithm for Splittable Intervals

We now prove Lemma 3.21. We consider a fixed setting of k¥ € N and € > 0, and let f: [n] — R be
any sequence which is e-far from being (12...k)-free. Furthermore, as per case 2 of the algorithm,

we assume that there exists a set T C [n]* of disjoint length-k£ monotone subsequences of f where

en
T >
7] = polylog(1/e)’

and (G, p,1) is a (k, k,«)-tree descriptor which represents (f, T, [n]), where a > &/polylog(1/e).

In what follows, we describe a sub-routine, Sample-Splittable,(f,¢) in terms of two parameters
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p,q € R. The parameter p > 0 is set to be sufficiently large and independent of n, satisfying

3

> polylog(1/2) (3.14)

P

One property which we will want to satisfy is that if we take a random subset of [n] by including
each element independently with probability 1/(pn), we will include an element belonging to E(T")
with probability at least 1 —1/(Ck), for a large constant C' > 0. The parameter ¢ will be an upper

bound on the query complexity of the algorithm, which we set to a high enough value satisfying:

[log, k| [log, k]
¢=0 (1 (bgn) ) <Ll (bgn) - polylog(1/e).

p\ p e \ ¢

Subroutine Sample-Splittable, (f,¢)

Input: Query access to a sequence f: [n] — R, and a parameter ¢ € (0,1).
Output: a subset of k indices i1 < --- < iy where f(i1) < --- < f(ig), or fail.

1. Let r = |logy k| and run Sample-Helper(r, [n], p), to obtain a set A C [n].

2. If |A] > ¢, return fail; otherwise, for each a € A, query f(a). If there exists a monotone

sequence of f of length k, then return that subsequence. If not, return fail.

Figure 3.8: Description of the Sample-Splittable subroutine.

The descriptions of the main algorithm Sample-Splittable; and the sub-routine Sample-Helper,
are given in Figure 3.8 and Figure 3.9. Note that, for any r € N, if we let D, be the distribution of
|A|, where A is the output of a call to Sample-Helper(r, [n], p). Then, we have that Dy = Bin(n, p),

and for r > 0, D, is stochastically dominated by the random variable

yo O(logn) (i)

Zh]
E : E : Tr_1s
i=1  j=1

where yo ~ Bin(n,1/(pn)) and mff_Jl) ~ D,y for all i € N and j € [O(logn)] are all mutually
independent. As a result, for r > 1,

E[[All <= -logn- E [z,

1
p z~Dr_1

and since Eg~p,[x] = 1/p, we have:

sz} ().
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Subroutine Sample-Helper (7, I, p)

Input: An integer » € N, an interval I C [n], and a parameter p € (0, 1).
Output: a subset of A C I.

1. Let Ag = 0. For every index a € I, let Ay <— Ao U {a} with probability 1/(p|I|).
2. If r =0, return Ajy.

3. If r > 0, proceed with the following:

e For every index a € Ay, consider the O(logn) intervals given by B,; = [a —
liya+0j], for j=1,...,0(logn) and ¢; = 2/, and let R, j + Sample-Helper(r —
17 Ba,jv P)~

e Let A be the set

A+ U Ra.;.
a€Ao, j=0(logn)

e return the set (Ag UA)N 1.

Figure 3.9: Description of the Sample-Helper subroutine.

We may then apply Markov’s inequality to conclude that |A| < ¢ with probability at least 99/100.
As aresult, we focus on proving that the probability that the set A contains a monotone subsequence
of f of length k is at least 99/100. This would imply the desired result by taking a union bound.

In addition to the above, we define another algorithm, Sample-Helper*, in Figure 3.10, which
will be a helper sub-routine. We emphasize that Sample-Helper* is not executed in the algorithm

itself, but will be useful in order to analyze Sample-Helper.
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Subroutine Sample-Helper* (r, I, p,T)

Input: An integer r € N, an interval I C [n], a parameter p € (0,1), and a collection of
disjoint intervals Z of [n].
Output: two subsets A, Ag C I.

1. Let Ag = 0. For every index a € I which lies inside an interval in Z, let Ag + AgU{a}
with probability 1/(p|I|).

2. If r =0, return Ag.
3. If r > 0, proceed with the following:

e For every index a € Ay, consider the O(logn) intervals given by B, ;
la — lj,a+ ¢, for j = 1,...0(logn), and ¢; = 27, and let (Rqj,Rajo) <
Sample-Helper*(r — 1, B, j, p,T).
e Let A to be the set
A «— U Ra,j-

a€Ayp, j=0O(logn)

e return the set (ANI,AgNI).

Figure 3.10: Description of the Sample-Helper* subroutine.

Before proceeding, we require a “coupling lemma.” Its main purpose is to prove the intuitive
fact that if Zy,Z; are collections of disjoint intervals, and the latter is a refinement of the former
(namely, each intervals in Z; is contained in an interval of Zy), then Sample-Helper*(r, [n], p,Zp) is

more likely to find a length-k monotone subsequence than Sample-Helper*(r,[n], p,Z1) does.

Lemma 3.23. Let r € N be an integer, f: [n] = R a function, p € (0,1) a parameter, and Zy and
7, collections of disjoint intervals in [n], such that each interval in Iy lies inside an interval from Zy.
Denote by (A(i),Aéi)) the random pair of sets given by the output of Sample-Helper*(r,[n], p,Z;),
fori=0,1. Lastly, let £: P([n]) x P([n]) = {0,1} be any monotone function; that is, it satisfies
E(S1,52) < E&(51,5%) for any Sy C S7 C [n] and Sa C S5 C [n]. Then,

Prie(A®, AD) = 1] > Prig(AW, A{Y) = 1],

Proof. Consider an execution of Sample-Helper*(r, [n], p, Zo) which outputs a pair (A(©), A(()O)). Let
A® and A® be the subsets of A and A respectively, obtained by running a parallel execution
of Sample-Helper*(r,[n], p,Z;), which follows the execution of Sample-Helper*(r,[n], p,Zy), but
whenever an element which is not in an interval of Z; is considered, it is simply ignored (i.e., it

is not included in A©® or in Ago) and no recursive calls based on such elements are made). It is
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easy to see that this coupling yields a pair (A(l), Aél)) with the same distribution as that given by
running Sample-Helper*(r,[n], p,Z1). As &(-,-) is increasing, if E(A(O),Aéo)) holds then so does
E(AM), A(()l)). The lemma follows. O

The following corollary is a direct consequence of Lemma 3.23. Specifically, we use the facts
that Sample-Splittable,(f,¢) calls Sample-Helper(|log, k|, [n], p), which is equivalent to calling
Sample-Helper(|logs k|, [n], p, {[n]}), and that finding a (12... k)-pattern in Z is a monotone event.

Corollary 3.24. Let Z be any collection of disjoint intervals in [n]. Suppose (A, Ayg) is the random
pair of sets given by the output of Sample-Helper*(|logy k|, n, p,Z), then,

Pr[Sample-Splittabley(f,¢) finds a (12...k)-pattern of f] >
Pr[A contains a (12...k)-pattern in fz].

Definition 3.25. Let kg € N be a positive integer, and let (G, o) be a ko-tree descriptor (for this
definition we do not care about the third component of the descriptor, 1). We say that p € [ko] is
the primary index of (G, o) if the leaf with rank p under <g is the unique leaf whose root-to-leaf
path (u1,...,uq) satisfies the following: for each d' € [d — 1], denoting the left and right children
of ug by v; and vy, respectively, ugy1 is vy if the number of leaves in the subtree rooted at vy is at

least the number of leaves in the subtree rooted at vy, and otherwise, ug 41 s vy.
With Corollary 3.24 in hand, we note that Lemma 3.21 follows from the next lemma.

Lemma 3.26. Let k,kg,n € N satisfy 1 < kg < k, let C be a large enough constant, and let
a,p € (0,1) be such that p > Ca and o > p/polylog(1/p). Let f: [n] = R be a function, let T be
a collection of disjoint intervals in [n], for each I € T let Ty C I™ be a set of disjoint, length-kq

monotone subsequence of f, and suppose that

> ITi| = an/4.

1€

Suppose that (G, ) is a (k, ko, a)-weighted-tree such that for every I € I there exists a func-
tion 17 : V(G) — S(I), such that (G, ,1;) is a tree descriptor that represents (f,Tr,I). Given
any r € N satisfying |logs ko| < 7, let (A, Ag) be the pair of sets output by the sub-routine
Sample-Helper™(r,[n], p,Z). With probability at least 1 —ko/(100k), there exist indices i1, ..., ik, €
[n] with the following properties.

1. (i1,...,1k,) is a length-kg monotone subsequence of f.
2. There is an interval I € T such that i1, ..., ig, € I N E(TT).
3. 01, ...,1k € A and i, € Ag, where p is the primary index of (G, o).
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Proof. The proof proceeds by induction on kyg. Consider the base case, when ky = 1. In this
case, |logy ko] = 0, so for any r > 0, Sample-Helper*(r,[n],p,Z) runs step 1. As a result,
Sample-Helper*(r,[n], p, Z) samples each element inside an interval of Z independently with prob-
ability 1/(pn). In order to satisfy the requirements of the lemma in this case, we need Ay to
contain an element of U;cz7T7. By the assumption on the size of this union, and because each of the
elements of the union lives inside some interval from Z, such an element will exist with sufficiently
high probability via a Chernoff bound.

For the inductive step, assume that Lemma 3.26 is fulfilled whenever ky < K, for K € N
satisfying 1 < K < k, and we will prove, assuming this inductive hypothesis, that Lemma 3.26
holds for kg = K. So consider a setting ko = K. Let Z, (G, ) and I be as in the statement of the
lemma. Denote the root of (G, 9) by vreot, and its left and right children by viefe and wvright. Let ¢
be the number of leaves in the subtree (Gjeft, 0left) ToOted at viefr, SO kg — ¢ is the number of leaves
in the subtree (Giight, Oright) Tooted at vright. We shall assume that ¢ > kg — ¢; the other case follows
by an analogous argument.

For each I € 7, the collection of pairs (J, Ty ), where J € lj(vroot) and Ty = 17 N Jko is the
restriction of T7 to J, is a (¢, 1/(6k), a)-splittable collection of I. Let J be the collection of all such
intervals J (note that they are pairwise disjoint and that J is a refinement of Z). Let (L, M, Ry)
be the partition of J into left, middle and right intervals, respectively, and let T}L) and T}R) be
sets of c-prefixes and (ko — ¢)-suffixes of ko-tuples from 77 ;, as given by Definition 3.7. Set

L={L;:JeJ}, R={R;:Jegy, T1H=1", 1®=]1".
Jeg Jeg

Note that (Glet, Oleft, L1jeft) is a (k, ¢, a)-tree descriptor for (f, Ty, J), with appropriate | jes. Sim-
ilarly, (Gright, Oright; l7right) is a (k, ko — ¢, a)-tree descriptor for (f, T, J), with appropriate | ight-

We consider an execution of Sample-Helper*(r,[n], p,Z) which outputs a random pair of sets
(A, Ap). Let AW and A(()L) be the subsets of A and Ay, respectively, obtained by running a parallel
execution of Sample-Helper™*(r,[n],p, L), where, as in the proof of Lemma 3.23, we follow the
execution of Sample-Helper*(r,[n], p,Z), but whenever an element which is not in £ is considered,
we ignore it. As stated above, this coupling yields a pair (A(L), AéL)) with the distribution given
by running Sample-Helper*(r,[n], p, L).

For a € A((]L), and any j € [O(logn)], let (A(“’j),A(()a’j)) be the output of the recursive call
(inside the execution of Sample-Helper*(r,[n], p,Z)) of Sample-Helper*(r — 1, B, j,p, R).

We define the collection:

Sy C S CETW)
S =4 (5,9) : there exist iy,...,i. € S forming a (12...c)-pattern such that i, € Sp
there exist J € J such that i1,...,i. € Ly

For each (Sp, S) € S, we let a(Sp, S) € E(T") be some i, € S such that there exist ¢ — 1 indices

01,y 0p—1,9pt+1,%c, such that (iq,...,4.) forms a (12...c¢)-pattern in S, and iy,...,4, € Ly for
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some J € J. Let seg(Sp, S) be this interval J, and let len(Sp, S) € [O(logn)] be the smallest j for
which R; C B, ;, where a = a(Sp, 5).
Let E;, be the event that

<A<L> nBT®), A N E(T<L>)> €S,
and let Er,(Sp, S) be the event that
AL N E(TM)) = 8, AP nETW) =5,

so BEp = U(g,,9)esEL(S0,5), and the events E (S, S) are pairwise disjoint.
By the induction hypothesis, applied with the family {L;: J € J} and the corresponding sets
L . L
T} ) (using ) ;7 \T} )\ = > se71Ts| = an/4), we have

PrE;] > 1 - ¢/(100k).

Let Eg(a, j) be the event that a € Ay, and in the recursive run of Sample-Helper*(r—1, By j, p, R)

inside Sample-Helper*(r, [n], p,Z), there exist indices 7}, ... ,iz,o_c such that
® (i1,...,y,_.) form a length (ko — c)-monotone subsequence.
o if,....iy _, € E(T\"), where J is the interval in J with i € J.
o i,... ,i;co_c e A@d) and i; c A(()a’j), where ¢ is the primary index of (Gright, Oright)-

Let Fr(a, j) be the event that in a run of Sample-Helper*(r—1, B, j, p, R), there exist i, ... 4 .
as above. Fix some (Sp,5) € S, and let a = a(Sy, S), J = seg(Sy, S) and j = len(Sp, S). We claim
that

Pr(Eg(a,j) | EL(S0,5)] = Pr[Fg(a, j)]-

Indeed, by conditioning on Er(Sy,S) we know that a € Ay, so there will be a recursive run of
Sample-Helper*(r — 1, By j, p, R), and moreover the event Er,(Sp, S) will have no influence on the
outcomes of this run.

Note that |T }R)\ > «a|Rj| > «|Bg,|/4. By the induction hypothesis, applied with the interval
B,.; in place of [n], the family {R;} and the corresponding set T}R), and the tree (Giight, Oright)s
we find that Pr[Fr(a,j)] > 1— (ko —¢)/(100k). We note that if both E(Sp, S) and Egr(a, j) hold,

then there are indices 1, .. .,ic, 4], ..., 4, . such that
. . . (L) ) ) .
e (i1,...,%c) is a length-c monotone subsequence in E(7;™), and (if,...,4, ) is a length-
¢ monotone subsequence in E(T}R)). In particular, (i1,...,ic,4,...,9, ) is a length-ko

monotone subsequence that lies in E(7}).

® i1,...,dc, 01,0 . € A and iy € Ag (recall that p is the primary index of both G and
Gleft)-
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Le. if these two events hold, then the requirements ot the lemma are satisfied. It follows that the
requirements ot the lemma are satisfied with at least the following probability, using the fact that
the events Ep (Sp, S) are disjoint.

> Pr[Eg(a(So, S),1en(So, 5)) and EL(So, S)]

(So,9)eS

= > Pr[Eg(a(S,5),1en(S0, 5)) | EL(So, )] x Pr[EL (S, 5)]
(S0,5)eS

> > Pr[Fg(a(So, ), 1en(So, 5))] x Pr[EL(So, 5)]
(So,S)eS

> (1 — kfo&:) . > Pr[EL(Sy, 9)]

(S0,9)€S

ko —c & ko
>(1- | 1— >1— ——.
= ( 100k > ( 100k> =7 100k

This completes the proof of Lemma 3.26. 0
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Chapter 4

Monotone Patterns:
An Adaptive O(logn) Algorithm

The results in this chapter appear in [27].

4.1 Introduction

In this chapter we continue the investigation of testing for monotone patterns, as presented in the
previous chapter. The main result is an adaptive algorithm with optimal dependence in n for solving

the above problem. In contrast, the result presented before were for non-adaptive algorithms.

Theorem 4.1. Fiz k € N. For any € > 0, there exists an algorithm that, given query access to a
function f: [n] — R which is e-far from (12...k)-free, outputs a length-k monotone subsequence

of [ with probability at least 9/10, with query complexity and running time of Oy .(logn).

For the precise bound on the query complexity and running time, see Lemma 4.8. Note that the
algorithm underlying Theorem 4.1 solves the testing problem with one-sided error, since a length-k
monotone subsequence is evidence for not being (12...k)-free. The algorithm improves upon the
non-adaptive query complexity Oy, ((logn) Llog2 k1) discussed in the previous chapter, and in partic-
ular, breaks the non-adaptive lower bound [22]. Hence, Theorem 4.1 implies a natural separation
between the power of adaptive and non-adaptive algorithms for finding monotone subsequences.

Theorem 4.1 is optimal, even among two-sided error algorithms. In the case k = 2, correspond-
ing to monotonicity testing, there is a Q(logn/e) lower bound (as long as, say, ¢ > n~"%) for both
non-adaptive and adaptive algorithms [46, 63, 66], even with two-sided error. A simple reduction
suggested in [109] shows that the same lower bound (up to a multiplicative factor depending on
k) holds for any fixed & > 2. Thus, an appealing consequence of Theorem 4.1 is that the natural
generalization of monotonicity testing, which considers forbidden monotone patterns of fixed length

longer than 2, does not affect the dependence on n in the query complexity by more than a constant
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factor. Interestingly, Fischer [66] shows that for any adaptive algorithm for monotonicity testing on
f: [n] — R there is a non-adaptive algorithm which is at least as good in terms of query complexity
(even if we only restrict ourselves to one-sided error algorithms). That is, adaptivity does not help
at all for £ = 2. In contrast, the separation between our O(logn) adaptive upper bound and the
Q((log n)l°e2*]) non-adaptive lower bound of [22] implies that this is no longer true for & > 4.

Harnessing adaptivity to improve algorithmic performance is a notoriously difficult problem in
many branches of property testing, typically requiring a good structural understanding of the task
at hand. In the context of testing for forbidden order patterns, non-adaptive algorithms are quite
weak: see the next chapter for an extensive discussion. Prior to these results, the only case for which
adaptive algorithms were known to outperform their non-adaptive counterparts was for patterns of
length 3 in [109]. It is generally believed that there should be some separation between adaptive and
non-adaptive testing algorithms for pattern detection; in fact, a conjecture of [109] suggests that
for non-monotone patterns, the adaptive query complexity for testing m-freeness is polylogarithmic
in n for any fixed-length 7, an exponential improvement over non-adaptive algorithms. While this
conjecture is still wide open, the result here is the first to show any kind of separation between
adaptive and non-adaptive algorithms for patterns of length more than 3.

As an immediate consequence, Theorem 4.1 gives an optimal testing algorithm for the longest
increasing subsequence (LIS) problem in a certain regime. The classical LIS problem asks to
determine, given a sequence f: [n] — R, the maximum k for which f contains a length-k increasing
subsequence. It is very closely related to other fundamental algorithmic problems in sequences,
such as computing the edit distance, Ulam distance, or distance from monotonicity (for example,
the latter equals n minus the LIS length), and was thoroughly investigated from the perspective of
sublinear-time algorithms [2, 113, 123, 126] and streaming algorithms [62, 76, 87, 107, 125, 130].
In the property testing regime, the corresponding decision task is to distinguish between the case
where f has LIS length at most k (where k is given as part of the input) and the case that f is
e-far from having such a LIS length. Theorem 4.1 in combination with the aforementioned lower
bounds (which readily carry over to this setting) yield a tight bound on the query complexity of
testing whether the LIS length is a constant.

Corollary 4.2. Fiz 2 < k € N and £ > 0. The query complexity of testing whether f: [n] — R
has LIS length at most k is ©(logn).

4.1.1 Techniques

We now describe the intuition behind the proof of Theorem 4.1. There are two main technical com-
ponents: 1) a strengthening of the structural result from the previous chapter, regarding splittable
intervals and growing suffixes; and 2) new (adaptive) algorithmic components which lead to the

O(logn)-query algorithm.
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Robustifying the structural decomposition. As mentioned above, there is an Oy .(logn)-
query non-adaptive algorithm for the growing suffixes case. Thus, in order to obtain an adaptive
algorithm with such query complexity, it suffices to develop such an algorithm under the splittable
intervals assumption. The splittable intervals condition, however, does not seem strong enough for
our purposes. Recall that in the splittable intervals case, the algorithm in the previous chapter
“guessed” the width w and lost a factor of O(logn) in the query complexity; the resulting analysis
bounded the number of times the algorithm needed to guess by |logy k|. In order to avoid the
O(log n)-factor loss more than once, one seemingly has to “identify”, in some way, the correct width,
and it is not clear how to do so effectively from the current structural theorem. In order to bypass
this issue, we substantially strengthen the structural theorem. The stronger statement asserts that
any f:[n] — R that is e-far from (12...k)-free satisfies either the growing suffixes condition,
defined previously, or a robust version of the splittable intervals condition, defined shortly. Even
though the algorithm will not be able to identify the correct width, the robust splittable intervals

condition enables exploiting guesses for the width that are too large.

e Robust splittable intervals: there exist ¢ € [k — 1] and a collection of pairwise-disjoint
intervals Iy, ..., I C [n] satisfying the same properties as in the “splittable intervals” setting
described above (with slightly different dependence on € and k in the Oy .(-) term). Addi-
tionally, any interval J C [n] which contains an interval I; is itself far from (12...k)-free, i.e.

it contains a collection of Qy, .(|J]) disjoint (12...k)-copies.

The advantage of this robust condition is that fully containing a splittable interval suffices to
conclude that the subsequence is Qy, . (1)-far from (12...k)-free (see Figure 4.1). As hinted above,
a guess for the width which is too large results in an interval fully containing a splittable interval,
and a lower bound on the fraction of length-£ monotone subsequences inside the interval considered
follows. We refer to this case as the “overshooting” case. We note that our proof of the “robust
structural theorem” combines the basic structural theorem from the previous chapter, used as a

black box, with additional combinatorial ideas.

Towards an algorithm. At a high level, the non-adaptive algorithms for this problem proceed
in a recursive manner where each step tries to find the relevant width considered (which is one
of Q(logn) options). Since their algorithms are non-adaptive, they consider all Q(logn) options
in recursive steps, and hence, suffer a logarithmic factor with each step. Since our algorithm is
adaptive, we want to choose one of the widths to recurse on. The algorithm ensures that the width
considered is large enough. When the width chosen is not too much larger, our recursive step
proceeds similarly to the non-adaptive algorithms; we call this the fitting case. However, the width
considered may be too large; we call this case overshooting. In order to deal with overshooting, we
utilize the robust structural theorem in a somewhat surprising manner to detect a (12...k)-copy.

We now expand on the above idea. As mentioned above, we may assume that f satisfies the

93



Figure 4.1: Robust Splittable Intervals. Ansequence f: [n] = R is displayed with a robust
splittable interval I;. Specifically, we have ¢ € [k — 1], L; and R; are two intervals such that
L; contains Qy .(|I;|) many length-c monotone patterns and R; contains €, .(|/;]) length-
(k—c) monotone subsequences. Furthermore, a subsequence in L; may be combined with one
in R; to obtain a length-k monotone subsequence in I;. The fact that I; is a robust splittable
interval is exemplified by the fact that any interval J such that I; C J contains Q .(]J])
disjoint monotone subsequences of length k. We note that this holds even if [J| > |I;|, so

that most of the length-£ monotone subsequences in .J are not in I;.

robust splittable condition. Sample, for Oy (1) repetitions, an index & € [n] uniformly at random,

and for each t € [logn], a random index y; € [z + 2!71, & 4 2]. Consider the following event:

The index x is a (sufficiently well-behaved)! first element in some (12...k)-pattern
falling in some robust splittable interval I;, and for t* € [logn] satisfying |I;| < 20" <
2|1;], yp is a (well-behaved) (¢ + 1)-th element in some (12...k)-pattern falling in I;.

We claim that, with high probability, the above event occurs for at least one choice of x, and
that when this event does occur, the algorithm can be applied recursively without incurring a
multiplicative logarithmic factor. Indeed, suppose that the above holds for some .2 We set y to
be y;, where t is the largest such that f(x) < f(y;) holds, and notice in particular that ¢ > t*.
This means that < y and f(x) < f(y).

The fitting component The fitting case occurs when ¢ (achieving the maximum above) is
roughly the same as t*. To handle this case, we recurse by finding a (12...c)-patterns in L;, and

(12...(k — c))-pattern in R;. At a high level, if one takes O (1) independent uniform samples z

'Recall that, in the non-adaptive algorithm, we hoped to hit a “l-entry” z whose value f(z) is no higher than

¢

some suitable median value; the “well-behaved” requirements are of similar flavor, and do not incur more than a

constant overhead on the query complexity.
2More precisely, our algorithm runs this procedure for any of our choices of @, without “knowing” which of them

satisfies the above event. Since the total number of choices is Oy (1), this incurs only a constant overhead.
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from [z, y], then one of them is likely to fall in the middle part M; of I;, so that L; C [ —2', 2] and
R; C [z,y + 2], allowing us to proceed recursively. This is conceptually similar to the algorithms

of [109] and [22], except that the recursion occurs only on one width, namely ¢, and it therefore

does

The

larger than t*. We expand on the main ideas here in more detail. The strong guarantee given by the
robust splittable intervals condition adds a “for all” element into the structural characterization,

which is able to treat the problem posed by overshooting. When ¢ is significantly larger than log |},

[$_2t 7,2] z [z7yt* +2t*}

Figure 4.2: The fitting case. A sequence f: [n] — R which falls in the splittable intervals
case, and the event that we refer to as the “fitting case” is presented. Specifically, the
algorithm proceeds by first sampling © ~ [n] which falls in a robust splittable interval, and
corresponds to the first index of some length-k£ monotone subsequence. The algorithm then
considers sampling one y; uniformly from the interval for [x + 2!~ 2 + 2¢]. The algorithm
looks for the largest t < logyn for which f(x) < f(y;). The relevant event for the fitting
case is that for the appropriate width containing R;, corresponding to t*, y;+ € R; and
corresponds to the (¢ + 1)-th index in a length-k monotone subsequence contained in I;. In
the fitting case, t is not too much larger than ¢*; in particular, the figure shows a case when
t = t*. The algorithm then samples z ~ [x,y;] which we show falls in M; with constant
probability, and the the algorithm recurses to search for a (12...c)-pattern on the interval
[ — 2" .z] and a (12...(k — c))-pattern on the interval [z, y; + 2¢].

not lose multiplicative logarithmic factors as in the previous approaches.

overshooting component. The other case, of overshooting, occurs when t is significantly

there exist k — 2 intervals Ji, ..., Jy_o C [z, y| satisfying the following conditions:

Ji lies immediately after the interval I; (recall that I; is the interval containing x).
i+1 lies immediately after J;, for any i € [k — 3.
|Ji| = |Ij| - age and |Jip1| = |Ji| - ag e for any i € [k — 3], for some large enough ay, . > 1.
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The surprising consequence of the robust splittable intervals condition is that even though the
intervals Ji, ..., Jy_o are disjoint from I;, for every i € [k — 2], the interval J; contains Qy, .(|.J;|)
disjoint length-k£ monotone subsequences. At a high level, the argument proceeds by considering, for
any i € [k — 2|, set J; to be the shortest interval containing both I; and J;. The robust splittable
intervals condition asserts that (since each J/ contains the splittable interval I;) the number of
disjoint (12...k)-copies in J] is proportional to |.J/|. Provided that cy . is large enough, this means
that J; = J/\ J/_, also contains a collection 7; of Q, -(|J;|) disjoint (12. .. k)-copies. We now define
two sets A; and B; as follows. Let A; be the collection of prefixes (a, ..., a;+1) of k-tuples from T;
with f(ai+1) < f(y), and let B; be the collection of suffixes (ajt1,...,ax) of k-tuples from 7; with
flais1) > f(y). As |Ti| = |Ail + |Bi|, one of A; and B; is large (i.e. has size at least Qy .(]J;])).
This seemingly innocent combinatorial idea can be exploited non-trivially to find a (12...k)-
copy. Specifically, the algorithm to handle overshooting aims to (recursively) find shorter increasing
subsequences in Ji, ..., Jx_o2, with the hope of combining them together into a (12...k)-copy.
Concretely, for any i € [k — 2], we make two recursive calls of our algorithm on J;: one for a (k —1)-
increasing subsequence in J; whose values are at least f(y),® and a second for an (i + 1)-increasing
subsequence in J;, with values smaller than f(y). By induction, the first recursive call succeeds
with good probability if |.A;| is large, while the second call succeeds with good probability if |B;] is

large. Since for any 7 either |A;| or |B;| must be large, at least one of the following must hold.

e 3; is large. In this case we are likely to find a length-(k — 1) monotone pattern in J; with

values at least f(y) > f(z), which combines with x to form a length-k£ monotone pattern.

o Aj_5 is large. Here we are likely to find a length-(k — 1) monotone pattern in Ji_o whose

values lie below f(y), which combines with y to form a length-k£ monotone pattern.

e There exists i € [k — 3] where both A4; and B;;; are large. Here we will find, with good
probability, a length-(i + 1) monotone pattern in J; with values below f(y), and a length-
(k — i — 1) monotone pattern in J;; with values above f(y); together these two patterns

combine to form a (12...k)-pattern.

In all cases, a k-increasing subsequence is found with good probability. See Figure 4.3 for an

example.

Query complexity. Finally, for the query complexity, our algorithm (which runs both the “fit-
ting” component and the “overshooting” component, to address both cases) makes O (logn)
queries in total. This holds as each call makes Oy, .(logn) queries in itself and O (1) additional

calls recursively, where the recursion depth is bounded by k.

3Technically speaking, our algorithm can be configured to only look for increasing subsequences whose values lie
in some range; we use this to make sure that shorter increasing subsequences obtained from the recursive calls of the

algorithm can eventually be concatenated into a valid length-k one.
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Figure 4.3: The overshooting case. A sequence f: [n] — R which falls in the splittable
intervals case for £k = 5. We consider the “overshooting case”. Specifically, we consider a
case when the algorithm samples & ~ [n] which falls in a splittable interval, but when we
sample y; ~ [z + 271, 2+ 2!] for all ¢ € [log, n], the largest ¢ € [log, n] where f(y;) > f(x)
falls very far from the splittable interval. In the figure, we omit the points y1,...,y; and let y
be the largest point where f(x) < f(y). The “overshooting case” considers the point where
at least k — 2 geometrically increasing intervals fit between x and y; these are displayed as
Ji,J2, and J3; by virtue of the splittable interval being robust, each J; contains €2 .(|J;])
disjoint length-k monotone subsequences. A; contains those length-k monotone subsequences
where the (i + 1)-th index is above f(y) and B; contains those whose (i + 1)-th index is
below f(y). As an example, (z1, 22, 23, 24, 24) € B4 and (v1, v2,v3,v4,v5) € Ag. The crucial
properties are: (i) for all i € [k — 2] any (12...¢)-pattern in A; and any (12...(k — 7))-
pattern in B;11 may be combined into a (12...k)-pattern, (ii) any (12...(k —1))-pattern in
B1 may be combined with x since f(y) > f(x), and (iii) any (12...(k — 1))-pattern in Ay
may be combined with y. The reasoning may proceed as follows: if |B;] is large, we find a
(12...(k — 1))-pattern and combine it with x; so, assume |Bi] is small, which implies |A;]
must be large. If |Ba] is large, then a (12)-pattern from A; and a (12... (k—2))-pattern from
By may be combined; so assume |Bz| is small which implies | As2| is large, . ... Eventually, we
deduce that we may assume | A;_o| is large, and a (12...(k — 1))-pattern in Ai_o may be

combined with y.
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Notation The notation used here generally extends that of Chapter 3. In many cases, we think
of augmenting the image of our input function f : [n] — R restricted to an interval I C [n]
with a special character x to consider f: I — R U {x}. The character * can be thought of as
a masking operation: In many cases, we will only be interested in entries x of f so that f(z)
lies in some prescribed (known in advance) range of values R C IR, so that entries outside this
range will be marked by *. Whenever the algorithm queries f(z) and observes x, it will interpret
this as an incomparable value (with respect to ordering) in R. As a result, x-values will never
be part of monotone subsequences. We note that augmenting the image with * is unnecessary
when considering non-adaptive algorithms. We say that for a fixed f: I — R U {x}, the set T is
a collection of disjoint monotone subsequences of length k if it consists of tuples (i1,...,i) € I*,
where i; < -+ <, and f(i1) < --- < f(ig) (in particular, f(i1),..., f(ix) # %), and furthermore,
for any two tuples (i1,...,4x) and (¢}, ...,1}), their intersection (as sets) is empty. We also denote
E(T) as the union of indices in k-tuples of 7', i.e., E(T) = U, . i )eriit;-- ik}

4.2 Stronger Structural Dichotomy

In this section, we establish the structural foundations — specifically, the growing suffizes versus
robust splittable intervals dichotomy — lying at the heart of our adaptive algorithm. Recall the
definition of the growing suffix and splittable intervals settings, as given in the previous chapter
(see Definitions 3.6 and 3.7).

The following theorem is a restatement of the growing suffixes versus (non-robust) splittable
intervals dichotomy from the previous chapter. There, the theorem is stated with respect to two
parameters, k,kg; for our purpose it suffices to set kg = k. Also, here we allow f to take the
value *, which is not the case in the previous chapter. Nevertheless, as the proof there takes into
account only the elements of a given family T° of disjoint length-k increasing subsequences, which

in particular are non-* elements, the same proof would work here.

Theorem 4.3 (Simplified form of Theorem 3.8). Let k,n € N, ¢ € (0,1), and C > 0, and let
I C [n] be an interval. Let f: I — R U {x} be a function and let T® C I*¥ be a set of at least |1
disjoint monotone subsequences of f of length k. Then there exist o € (0,1) and p > 0 satisfying
a > Q(e/k%) and p < poly(klog(1/¢)) such that at least one of the following conditions holds.

1. Growing suffizes: There exists a set H C [n], of indices that start an (o, Cka)-growing
suffiz, satisfying a|H| > (¢/p)n.

2. Splittable intervals (non-robust): There exist an integer ¢ with 1 < ¢ < k, a set T, with
E(T) C E(TY), of disjoint length-k monotone subsequences, and a (c,1/(6k),a)-splittable
collection of T, consisting of disjoint interval-tuple pairs (I1,T1),...,(Is,Ts), such that

@Y I = |T°/p. (4.1)
h=1
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As argued in Section 4.1.1, the splittable intervals condition does not seem strong enough by
itself to be useful for adaptive algorithms. Therefore, we next aim to establish a stronger structural
dichotomy, asserting that f satisfies either the growing suffixes condition, or a robust version of the
splittable intervals condition. The next lemma will imply that the growing suffixes condition can

be robustified by merely throwing away a subset of “bad” splittable intervals.

Lemma 4.4. Let o € (0,1) and let I C N be an interval. Suppose that I1,...,Is C I are disjoint
intervals such that Y, _i [In| > «|I|. Then there exists a set G C [s] such that

Dl = (/4]

heG

and for every interval J C I that contains an interval Iy, with h € G,

Y = (/4]

he[s]: I,CJ

Proof. Let B C [s] be the set of indices h for which there is an interval J, O I satisfying
> neps):nnc nl < (a/4)[J]. For each h € B fix such a containing interval J(Ip).

Let J be a minimal subset of {J(I,) : h € B} with the following property: for any h € B
there exists J € J containing I;. Such a minimal subset clearly exists, since {J(I},) : h € B} itself
satisfies this property (but is not necessarily minimal). The next claim asserts that no vertex is

covered more than three times by sets in J.

Claim 4.5. FEvery element x € I is contained in at most three intervals from J .

Proof. The proof follows from the minimality of 7. Consider first the case where x € Ij~ for some
h* € B. Let J;, = |ar,br] be an interval from J that contains x, and whose left-most element ay,
is furthest to the left among all intervals from J that contain x; pick Jr = [ar, br] symmetrically,
with br being furthest possible to the right; and let Jy; = [aar, bas] be an interval from J that
contains I,. We claim that J does not have any other intervals that contain x. Suppose, to the
contrary, that there exists J = [a,b] € J containing = where J # Jr,, Jg, Jur; note that by definition
of Jr and Jys, ar, < a and b > b.

We claim that J \ {J} covers all intervals Ij, with h € [B]; it suffices to show that for any h € B
such that I, C J, one of the intervals Ji, Jg, Jys covers I,. Consider h € B such that I, C J,
and write I, = [¢,d]. If h = h*, then I}, C Jy;. If I}, lies to the left of Ij«, then d < x < by, and
c>a>ar,sol, CJr. Similarly, if I, lies to the right of I, then I}, C Jg. It follows that, indeed,
intervals from J \ {J} cover all intervals in {Ij : h € B}, contradicting the minimality of 7.

Now, if  is not contained in any interval of I, with h € B, then we can show similarly that

there are at most two intervals from J that contain x, by defining J; and Jg as above. O
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Let U be the union of intervals from J. In light of the above claim,

Sm<X (X ml) <SS,

heB JeJ \hels]: InCJ JeJg

where the first inequality holds because each I, with h € B is covered by an interval in J; the
second inequality follows from the definition of B, as J consists of sets J(I;) with h € B; the third
inequality follows from the claim; and the last one holds because U C I. Finally, let G = [s] \ [B].

By assumption on ), || and the previous line,

YLAED SRS HIAESY (S ENl]

heG hels] heB

and every interval J that contains an interval I with h € G satisfies 3 ;1. 1, [nl = (a/4)[J],

as required. O

The robust version of the structural dichotomy is stated below; the proof follows easily from

the basic structural dichotomy in combination with the last lemma.

Theorem 4.6 (Robust structural theorem). Let k,n € N, € € (0,1), and C > 0, and let I C [n]
be an interval. Let f: 1 — R U {x} be an array and let T® C I* be a set of at least €|I| disjoint
length-k monotone subsequences of f. Then there exist o € (0,1) and p > 0 with o > Q(e/k?) and
p < poly(klog(1l/e)) such that at least one of the following holds.

1. Growing suffixes: There exists a set H C [n], of indices that start an («, Cka)-growing
suffiz, satisfying o|H| > (¢/p)n.

2. Robust splittable intervals: There exist an integer ¢ with 1 < ¢ < k, a set T, with
E(T) C E(TY), of disjoint length-k monotone subsequences, and a (c,1/(6k),a)-splittable
collection of T, consisting of disjoint interval-tuple pairs (I1,T1),...,(Is,Ts), such that

S
@ Il = (e/p)l], (4.2)
h=1
Moreover, if J C I is an interval where J D Iy, for some h € [s], then J contains at least
(e/p)|J| disjoint (12...k)-patterns from T°.

Proof. Apply Theorem 4.3. Let a* € (0,1) and p* be parameters such that a* > Q(e/k%) and
p* < poly(klog(1/e)), as guaranteed by the theorem. Set o = o* and p = 4p*. If Condition 1 holds
in the application of Theorem 4.3, then the analogous growing suffix condition in Theorem 4.6
clearly holds. So suppose that Condition 2 in Theorem 4.3 holds, and let ¢ and (I1,T1),. .., (Is, Ts)
be as guaranteed there. In particular, we have Y 5 _; |[In| > (1/p*a*)|T°|. By Lemma 4.4, there is
a subset G C [s] such that >, . |In] = (1/4p*a*)|T°| > (e/4p*a*)|I| = (¢/pa)|I]; and, for every
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interval J in I that contains an interval I, with h € [G], > 2peiq. 1,0 nl = (¢/4p™a”)|J|. Since
each Iy, contains at least o*|I;,| disjoint length-k increasing subsequences, it follows that J contains
at least (¢/4p*)|J| = (¢/p)|J]| length-k increasing subsequences. Taking 7" to be the union of T}
over h € G, along with the pairs (I, T},) with h € G, we obtain the required robust splittable

intervals. O

4.3 The Algorithm

Our aim in this section is to prove the existence of a randomized algorithm, Find-Monotoneg(f,,9),
that receives as input a function f: I — RU{x} (where I C N is an interval), and parameters ,0 €
(0,1), and satisfies the following: if f contains e|I| disjoint (12...k)-patterns, then the algorithm
outputs such a pattern with probability at least 1 — d; and the running time of the algorithm
is Ok c(logn). To this end, we describe such an algorithm in Figure 4.6 below. This algorithm
uses three subroutines: Sample-Suffix, Find-Within-Interval, and Find-Good-Split, the first
of which is given in the previous chapter, and the latter two are described below, in Figures 4.4
and 4.5. The majority of the section is devoted to the proof that Find-Monotone indeed outputs
a (12...k)-pattern with high probability as claimed. Specifically, we shall prove the following

theorem.

Theorem 4.7. Let k € N. The randomized algorithm Find-Monotoney(f,¢e,0), described in Fig-
ure 4.0, satisfies the following. Given a function f: I — R U {x} and parameters ¢,6 € (0,1), if f
contains at least €|I| disjoint (12...k)-patterns, then Find-Monotoney(f,e,0) outputs a (12...k)-
pattern of f with probability at least 1 — 6.

Our proof proceeds by induction on k. It relies on a slightly modified version of Lemmas 3.20,
along with two new claims, Lemmas 4.10, 4.11. The proofs of the latter two assume that The-
orem 4.7 holds for smaller k. We first state and prove these lemmas, and then we prove The-
orem 4.7.

To complete the picture, we need to upper-bound the query complexity and running time of

Find-Monotone. We do this in the following lemma, whose proof we delay to the end of the section.

Lemma 4.8. Let f: I — RU{x}, where I is an interval of length at most n. The query complexity

and running time of Find-Monotoney(f,,0) are at most

™ |

o(k)
(kk - (log(1/e))* - ~10g(1/5)> -logn.

The Sample-Suffix Sub-Routine

We restate Lemma 3.20 which gives the Sample-Suffix,; subroutine, with a few adaptations to fit

our needs.
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Lemma 4.9 (Restatement of Lemma 3.20). Consider any fized value k € N, and let C > 0 be a
large enough constant. There exists a non-adaptive and randomized algorithm Sample-Suffix,(f,e,J)
which takes three inputs: query access to a function f: I — RU{x}, where I C N is an interval, a
parameter e € (0,1), and an error probability bound 6 € (0,1). Suppose there exists a € (0,1), and a
set H C I of (o, Cka)-growing suffizes of f satisfying a|H| > €|I|. Then, Sample-Suffix,(f,¢,0)
finds a length-k monotone subsequence of f with probability at least 1 —§. The query complexity of
Sample-Suffix,(f,e,d) is at most

1
log(1/0) - polylog(1/e) - . logn.

There are two differences between this statement and Lemma 3.20. First, here we have error
probability 0, whereas in Lemma 3.20 the error probability is 1/10. In order to achieve error
probability d, we perform O(log(1/6)) independent repetitions of Sample-Suffix,, as described in
the previous chapter. These are reflected in the query complexity. The second difference is that
we consider functions f: I — R U {x}. Inspecting the proof of Lemma 3.20, one can see that
Sample-Suffix; is guaranteed to output, with high probability, (12...k)-patterns whose indices
are specified in Definition 3.6. Since the algorithm is non-adaptive, enforcing that indices not

partaking in growing suffices not be used (by making them x) does not affect that analysis.

Handling Overshooting: The Find-Within-Interval Sub-Routine

In this section, we describe the Find-Within-Interval subroutine, addressing the overshooting
case as explained in Section 4.1.1.

As the algorithm may appear un-intuitive, let us remind the reader of the setup in which this
subroutine is relevant (see also Section 4.1.1). By Theorem 4.6, either the growing suffixes condition
or the splittable intervals condition hold. The former case is handled by Lemma 4.9, so we assume
that the latter holds. Now assume that we sampled an element @ which is the first element of
a length-c increasing subsequence from a set L; as described in Definition 3.7. We then sample,
uniformly at random, elements y from [z,  +2']. The splittable intervals condition implies that we
will find, with high probability, an element y which is the last element of a length-(k — ¢) increasing
subsequence from R;. In particular, f(y) > f(x). However, even if we did indeed sample such y,
we may have sampled many other values of ¢y’ with f(y') > f(«), and we do not know of a way
of determining which of these values is the “correct” one. Instead, we take yg to be the largest
sampled ¢y’ such that f(y’) > f(x). The case where yq is close to y is taken care of by Lemma 4.10,
so we assume that yg is much larger than y.

We now have elements  and yg, and all that we know is that they contain a large portion of an
interval I; from the splittable intervals condition. It is not hard to see (this is shown in the proof of
Theorem 4.7) that [z, yo] can be partitioned into k—2 intervals Ji, ..., Ji_2, each of which contains
many disjoint length-%£ increasing subsequences. To continue, out only hope is use the induction

hypothesis to find shorter increasing subsequences in the intervals. For example, if there are many
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Subroutine Find-Within-Intervaly(f,e,d,z,y,J).

Input: Query access to a function f: I — R U {x}, parameters ,0 € (0,1), two inputs
x,y € I where z < y and f(x) < f(y), and J = (Ji, ..., Jy—2) which is a collection of disjoint

intervals appearing in order inside [z, y].

Output: a sequence i1 < ... < i with f(i1) < ... < f(ig), or fail.

1. For every k € [k — 2], let fu, fl.: J. — R U {x} be given by:

fﬁ(i):{f(i) JO<IW 4 - {f(i) f(i)Zif(y)‘ (43)

* O0.W.

2. Call Find-Monotone,+1(fx,e/2,d/(2k)) for every € [k — 2].
3. Call Find-Monotoney_.(f\,c/2,0/(2k)) for every k € [k — 2].

4. Consider the set of all indices that are output in Lines 2 and 3, together with x and y.
If there is a length-k increasing subsequence among these indices, output it. Otherwise,

output fail.

Figure 4.4: Description of the Find-Within-Interval subroutine.
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disjoint length-(k — 1) increasing subsequences in J; that lie above @, then one such subsequence is
likely to be detected by a recursive call to the main algorithm, and together with x it will form a
length-% increasing subsequence. If there are few such length-(k — 1) subsequences, this means that
there are many disjoint length-2 increasing subsequences in J; that lie below  (because for every
length-k increasing subsequence, either its (k — 1)-suffix lies above x, or its 2-prefix lies above x).
We can then use a recursive call to detect such a sequence, and hope to complete it to a length-k
subsequence using a length-(k — 2) subsequence from J, that lies above . Continuing with this
logic, it follows that with high probability we can find an increasing subsequence of length k using

x and Jy, J; and J; 41 for some i, or Ji_o and yg.

Lemma 4.10. Consider the randomized algorithm, Find-Within-Intervaly(f,e,6,z,y,J), de-

scribed in Figure 4.4, which takes six inputs:
o Query access to a function f: I — R U {x},

e Two parameters €,6 € (0,1),

Two points x,y € I where x <y and f(x) < f(y), and

A collection J = (J1,...,Jx—2) of k—2 disjoint intervals that appear in order (i.e., J, comes
before Jy1+1) within the interval [z, vy,

and outputs either a length-k increasing subsequence of f, or fail.

Suppose that for every k € [k — 2|, the function f|;.: Js — R U {x}, contains e|Js| dis-
joint (12...k)-patterns. Then, assuming that Theorem 4.7 holds for every k' with 1 < k' < k,
Find-Within-Intervaly(f,¢,d,z,y,J) outputs a length-k monotone subsequence of f with prob-
ability at least 1 — 9.

Proof. For each k € [k — 2], let C,; be a collection of at least ¢|J,| disjoint (12...k)-patterns in J,.

We form the following two collections, of suffixes and prefixes of (12...k)-patterns in C.

A ={(i1,. . dw+1) ¢ (41, ..., ix41) is a prefix of a k-tuple from C, and f(ik+1) < f(y)}
By = {(ixt1s---57k) : (ft1,---,0k) is a suffix of a k-tuple from C, and f(ixy1) > f(y)}

Note that for each (12...k)-pattern in Cy, either its (k + 1)-prefix is in A, or its (k — k)-suffix
is in By. Thus, at least one of A, and B, has size at least (¢/2)|Jx|. Say that J, is of type-1 if
|Ax| > (£/2)|Jx|, and otherwise say that .J,; is of type-2 (in which case |Bx| > (€/2)]J])-

Now, if J, is of type-1, then Line 2, called with x, will find a (12...(k + 1))-pattern with
probability at least 1—4§/(2k), by Theorem 4.7 for K+ 1 < k (namely, the inductive hypothesis) and
the lower bound on |A,|. On the other hand, if J,; is of type-2, Line 3 will output a (12... (k—k))-
pattern with probability at least 1 — §/(2k), due to the inductive hypothesis and the lower bound
on |B,|. Thus, by a union bound, with probability at least 1— ¢, Line 2 outputs a pattern whenever

J is of type-1, and Line 3 outputs a pattern whenever .J, is of type-2.
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Subroutine Find-Good-Split,(f,¢,d, ¢, §&).

Input: Query access to a function f: I — R U {x}, parameters €, € (0,1), and ¢ € [k — 1].
We let ¢; > 1 be a large enough (absolute) constant.

Output: a sequence i1 < ... < i with f(i1) < ... < f(ig), or fail.
1. Repeat the following procedure t = c1k/(£€2) - log(1/68) times:

(a) Sample w,z ~ I, and consider the functions f,.,: I N (—o00,z) — R U {*} and
2wt I N[z,00) = RU{*} given by

fz,w(i) =

0. W.

{ FG) f) < fw)
(4.4)

(b) Run Find-Monotone.(fs w,e{/3,0/3) and Find-Monotoney (f7 ,,,€£/3,0/3).

2. If both runs of Line 1b are successful for some iteration and some w, z and ¢, then we
output the combination of their outputs which forms a length-% increasing subsequence

of f; otherwise, output fail.

Figure 4.5: Description of the Find-Good-Split subroutine.

Notice that if Jy is of type-2, the (12...(k — 1))-pattern returned in Line 3 can be combined
with = to form a (12...k)-pattern. Hence, we may assume that J; is of type-1. Furthermore,
if Ji_o is of type-1, the (12...(k — 1))-pattern found in Line 2 can be combined with y to form
a (12...k)-pattern, and hence, we may assume that Jx_o is of type-2. Thus, there exists some
k € [k —3] where J,; is of type-1 and J,41 is of type-2. Since J,; comes before J,. 11, and since non-x
elements in f, lie below the non-* elements of f;  ;, we can combine the (12...(x + 1))-pattern in
[ with the (12...(k — x — 1))-pattern in f] ;. O

Handling the Fitting Case: The Find-Good-Split Sub-Routine

In this section, we describe the Find-Good-Split subroutine, which corresponds to the fitting case

from Section 4.1.1.

Lemma 4.11. Consider the randomized algorithm Find-Good-Split(f,¢,d,¢,§), described in Fig-

ure 4.5, which takes as input five parameters:
o Query access to a function f: I — R U {x},

e Two parameters £,6 € (0,1),
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o An integer c € [k — 1], and
e A parameter £ € (0,1],

and outputs either a length-k increasing subsequence or fail.

Suppose that there exists an interval-tuple pair (I',T') which is (c,1/(6k), €)-splittable and |I'| /|| >
€. Then, the algorithms Find-Good-Split.(f,e,d,¢, &) finds a (12...k)-pattern of f with probab-
ity 1 — 9.

Proof. Let (I',T) be (¢,1/(6k), e)-splittable, and let L, M, R be the contiguous intervals splitting
I’ as in Definition 3.7. Furthermore, let T(X) and T(®) be as in Definition 3.7. Writing

my = rank ({f(zc) (i1, ...y 00) € T(L)} , |T]/3) ,
ms = rank ({f(ic) (i, ... ie) € T<L>} ,2|T|/3) :

as the (|T]/3)-largest and (2|T'|/3)-largest elements in {f(i.) : (i1,...,i.) € T®)} (taking multi-
plicity into account). Let Tl(L) be the (12...c)-patterns in T5) where the c-th index is at most
mq, and T,ER) be the (k — ¢)-patterns in T whose (¢ + 1)-th index is larger than my. Notice
that ]TI(L)], ]T}(LR)\ > |T'|/3, and that any (12...c)-pattern from TI(L) can be combined with any
(12...(k — c¢))-pattern from T,ER) to form a (12...k)-pattern. Furthermore, there exists at least
|T|/3 indices in I’ whose function value lies in [mq, ma).

Consider the event, defined over the randomness of w,z ~ I that: z € M; and w satisfies
f(w) € [m1,mg]. This event occurs at some iteration of Line 1, with probability at least 1 — ¢/3;
this is because there are |M| > |I'|/(6k) > (£/(6k))|I| valid indices for z, and there are at least
IT|/3 > (¢/3)|I'| > (¢£/3)|I| indices for w, so the probability that the pair (z,w) satisfies the
requirements is at least ££2/(18k). We obtain the desired bound by the setting of ¢, since c; is set
to a large enough constant.

Notice that when this event occurs, the (12...c)-patterns in TZ(L) all lie in f, 4, and the
(12...(k — ¢))-patterns in T,ER) all lie in f ,,. In particular, f.,. contains at least |T|/3 >
(e/3)|I'| = (£/3)|1] disjoint (12...c)-patterns, and f,,, similarly contains at least (¢£/3)[I] dis-
joint (12...(k — ¢))-patterns. Thus, by the inductive hypothesis, Line 1b finds a (12...c¢)-pattern
in fzw and a (12...(k — c))-pattern in f; ,, with probability at least 1 —2§/3, and these can be

combined to give a (12...k)-pattern of f. O

The Main Algorithm

Consider the description of the main algorithm in Figure 4.6. We prove Theorem 4.7 by induction

on k. The proof uses Lemma 4.9, Lemma 4.10, and Lemma 4.11.

Proof of Theorem 4.7.
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Subroutine Find-Monotoney(f, ¢, 0).

Input: Query access to a function f: I — RU{x}, parameters ,0 € (0,1). We let ¢y, co, c3 >
0 be large enough constants, and let p = P(klog(1/¢)), where P: R — R is a polynomial of

large enough (constant) degree.

Output: a sequence i1 < ... < iy with f(i1) < ... < f(ig), or fail.
1. Run Sample-Suffix,(f,e/p,J).

2. Repeat the following for ¢; log(1/4) - p - k°/e? many iterations:

(a) Sample x ~ I uniformly at random. If f(x) = *, proceed to the next iteration.
Otherwise, if £k = 1 output @ and proceed to Step 3, and if £ > 2 proceed to the

next step.

(b) For each t € [logn], sample y; ~ [z + 2'/(12k), z + 2'] uniformly at random. If
there exists at least one ¢ where f(y:) > f(x), set

y =max{y : t € [logn] and f(y;) > f(z)}, (4.5)
let t* € [logn] be the index for which y;+ = y, and continue to the next line.
Otherwise, i.e. if f(y;) # f(x) for every t, continue to the next iteration.

(c) If k =2, output (x,y) and proceed to Step 3. If k > 2, continue to the next line.
(d) Here k > 3. Set ¢ = 4p/e and perform the following.

i. Consider the collection J of k — 2 intervals Ji,..., JJy_o appearing in order

within [@, y], given by setting, for every i € [k — 2],

2t —1—i il k—2—i

and run Find-Within-Intervaly(f,e/2p,d/2,x,y,J).
ii. For each ' € [t* — 3klog/,t*] do the following.

Consider the interval Jy = [z — 2/ a + 2¥], and the restricted function
gr: Jy — R U {x} given by gy = f|;,. For every co € [k — 1], run
Find-Good-Split, (gy,e/(c2k®),8/2, co, 1/4).

3. If a length-k£ monotone subsequence of f is found, output it. Otherwise, output fail.

Figure 4.6: Description of the Find-Monotoney subroutine.
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Base Case: k= 1.
Recall that f has at least ¢|I| non-* values. Thus, with probability at least 1 — §, a non-x value
is observed after sampling @ ~ I at least (1/¢) - log(1/d) times. It follows that with probability at

least 1—4, Line 2a of our main algorithm, given in Figure 4.6, samples & # * in one of its iterations.

Inductive Step: proof of Theorem 4.7 for k > 2, under the assumption that it holds for every &’
with 1 < k' < k.

Let p = P(klog(1/e)) (recall that P(-) is a polynomial of sufficiently large (constant) degree).
Apply Theorem 4.6 to f.

Suppose, first, that (1) of Theorem 4.6 holds. So, there exists a set H C [n] of indices that
start an (a, Cka)-growing suffix, with o|H| > (¢/p)n, for some a € (0,1). By Lemma 4.9, the
call for Sample-Suffix,(f,e/p,d) in Line 1 outputs a length-k monotone subsequence of f with
probability at least 1 — §. Now suppose that (2) of Theorem 4.6 holds, and let (I1,T}),...,(Is,Ts)
be a (c,1/(6k), a)-splittable collection for some o > Q(¢/k%) and ¢ € [k — 1], satisfying (4.2) and,
moreover, that any J C I with J D Ij for some h € [s] contains (g/p)|J| disjoint (12...k)-patterns.
Let Event be the event that, for a particular iteration of Lines 2a and 2b, « is the 1-entry of some
k-tuple from T}, for some h € [s], and y; is the (¢ 4 1)-entry of some (possibly other) k-tuple in
Ty, where t is such that |Ij,| < 2t < 2|I,].

Claim 4.12. Pr[Event| > ca/(2p).

Proof. For each h € [s], let A, and By, be the collections of 1- and (¢ + 1)-entries of patterns in Tj,.
Then

S S

S
PIEUED AT A

h=1 h=1 h=1

]5) 1.
The first inequality follows from the assumption that (I,7}) is (¢, 1/(6k), a)-splittable, and the
second inequality follows from the assumption that (4.2) holds.

As a result, the probability over the draw of @ ~ I in Line 2a that & € Ay, is at least ¢/p. Fix
such an x, and consider ¢ € [logn| for which |Ij,| < 2¢ < 2|I;|. Notice that By, C [z + 2¢/(12k), = +
2!] since 271 < |I,| < 2!, and that the distance between any index of A, and By is at least
|In]/(6k) > 2'/(12k) since (Iy,T}) is (c,1/(6k), a)-splittable. Therefore, the probability over the
draw of y; ~ [& + 2'/(12k), = + 2] that y; € By, is at least |By|/2! > |Th|/(2|11]) > a/2. O

By the previous claim, since we have c; - log(1/8) - p - k°/e? iterations of Lines 2a and 2b, with
probability at least 1 —§/2, Event holds in some iteration (using the lower bound a > Q(g/k%) and
the choice of ¢; as a large constant). Consider the first execution of Line 2a and Line 2b where
Event holds (assuming such an execution exists). Let h € [s] and ¢ € [logn| be the corresponding
parameters, i.e., h and ¢ are set so « is the first index of a k-tuple in T}, y; is the (¢ + 1)-th index

in another k-tuple in T}, and |I,| < 2! < 2|I;|. We consider this iteration of Line 2, and assume
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that Event holds with these parameters for the rest of the proof. Notice that y, as defined in (4.5),
satisfies y > y; (as f(y) > f(x)) and hence t* > t.

Note that if & = 2, the pair («,y), which is a (12)-pattern in f, is output in Line 2c, so the
proof is complete in this case. From now on, we assume that £ > 3. We break up the analysis into
two cases: t* > t+3klogl and t* < t+3klogf. Suppose first that t* > t+ 3k log . We now observe
a few facts about the collection J specified in (4.6). First, notice that Jy,..., Jx_o appear in order
from left-to-right, and they lie in [z, y] (as y = y¢ € [z +2V/(12k),2"]). Second, in the next claim
we show that for every i € [k — 2], the interval J; contains (¢/2p)|J;| disjoint (12...k)-patterns.

Claim 4.13. J; contains (¢/2p)|J;| disjoint (12...k)-patterns.

Proof. Let J! be the interval given by

o
J =T,U a:,a:—kﬁ-ﬁ(le)

Observe that

2t N2t N2 2r N2 £
TN Tl <ot 2. g—(k—l—z) < 2 _e—(k—l—z) _ s~ . g—(k—?—z) >Z 0= =]
AT <2+ o ~ 6k ¢ 12k =7 1l 2p|1|’
where for the second inequality we used the bound t* — ¢ > 3klog ¢ > log(12) +log k + (k — 2) log ¢,
and that ¢ = 4p/e.
We have by Theorem 4.6, that J/ contains at least (¢/p)|J!| disjoint (12...k)-patterns in f.

Hence, the number of disjoint (12...k)-patterns in J; is at least:
£ € £
b | Til = 1T\ Jil = % T > % | Jil,
as required. ]

By Lemma 4.10, Line 2(d)i outputs a (12...k)-pattern in f with probability at least 1 — /2.
By a union bound, we obtain the desired result.

Suppose, on the other hand, that t* < ¢ + 3klog/. In this case, as 2071 < |I| < 2% (by
choice of t), for one of the values of ¢’ considered in Line 2(d)ii we have 28! < |I,| < 2¥; fix
this ¢'. The interval Jy, defined in Line 2(d)ii, hence satisfies |I|/|Jy| > 1/4. As a result, and
since I, C Jy (because t < t*), the function g: J — R U {*} contains an interval-tuple pair
(Ip, Ty) which is (¢, 1/(6k), «)-splittable. By Lemma 4.11, once Line 2(d)ii considers ¢y = ¢, the
sub-routine Find-Good-Split,(g,c/(cak®),d/2,¢,1/4) will output a (12...k)-pattern of gy (which
is also a (12...k)-pattern of f) with probability at least 1 — d/2. Hence, we obtain the result by a

union bound. ]
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Query Complexity and Running Time

It remains to prove Lemma 4.8, estimating the number of queries made by Find-Monotone, as well

as its total running time.

Proof of Lemma 4.8. We first claim that the running time is bounded by an expression of the
form poly(k) times the query complexity of Find-Monotone, where the poly(-) term is of constant
degree. Indeed, the only costly operations (in terms of running time) other than querying that our

algorithm conducts involve:

e Determining whether the value of f at a certain point is * or not; to this end, note that for
any f we need to evaluate along the way, f(x) is marked by * if and only if it does not belong
to some interval in R, whose endpoints are determined by the recursive calls that led to it.

Since the recursive depth is at most k, this means that the complexity of the above operation
is O(k).*

e Given an ordered set of queried elements ) at some point along the algorithm, determining
whether these elements contain a c-increasing subsequence for ¢ < k (this action is taken,
e.g., in the last part of Find-Monotone). This operation can be implemented in time O(c|Q)).
Now, the number of such operations that each queried element participates in is at most k,’
and a simple double counting argument implies that the running time of these operations

altogether is at most O(k?) times the total query complexity.

It remains now to prove the bound on the query complexity. Recall that P: R — R is a
fixed polynomial; write py. = P(klog(l/e)). We fix n, which upper bounds the length of all
intervals defining input functions. Let ®(k,e,d) be the maximum number of queries made by
Find-Monotoneg(f,e,d). Let

&M (k,e,6) = query complexity of Sample-Suffix,(f,¢,d).

query complexity of Find-Within-Intervaly(f,e,d, z,y,J),

& (k,e,0) =
where |J| =k — 2.

query complexity of Find-Good-Split,(f,e,d,¢,§),

) (k,e,0,¢) =
(;€,8,€) where ¢ € [k —1].

“In fact, this complexity can be improved to O(1) if, instead of working with functions of the form f: I — RU{x*},
we would have worked with function f: I — R and received the interval of “non-* values” as an input to the recursive
call.

5More precisely, for the purpose of this section, if an element is queried ¢ > 1 times by our algorithm then we
think of it as contributing ¢ to the total query complexity (since our goal is to prove upper bounds here — not lower
bounds — this perspective is clearly valid); and in this case, the number of operations as above in which it participates

is at most k - ¢t.
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By Lemma 4.9, as well as an inspection of Figure 4.4 and Figure 4.5, we have:

<I>(1)(k,5,5) < Dre é -log(1/6) - logn

&2 (k,e,6) <2k - Bk —1,£/2,6/(2K))
c1klog(1/9)

3
PP (k6.6 < —— 5

- ®(k—1,6€/3,8/3).
Lastly, inspecting Figure 4.6, we have
D(k,e,0) < W (k,e/pre,d)+
clpkﬁ’;j log(1/3) (1 +logn + ) (k,e/(2pre),6/2) + P (k, 2/ (c2k?),6/2, 1/4))

< 5 108(1/0) Togn + e =5 - (0g(1/0) - @k — 1,/ g1, 0/ (3h)
1 o(k)
< (¥ Gogt1/2) L 1081/8))  logn,

where @): R — R is a fixed polynomial of large enough (constant) degree and g . = Q(klog(1/¢)).
For the last line we use that ®®(1,-,-) = & (2,.,.) = &G)(1,.,.,.) = ®3)(2,.,.,.) = 0, and we
note that the parameter replacing e never falls below /(klog(1/€))°®), so the factor of logn at
each iteration is at most (k*(log(1/¢))*(1/e) log(l/é))o(k). O
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Chapter 5

General Patterns: Stitching, Lower

Bounds, and Hierarchies

The results in this chapter appear in [23].

5.1 Introduction

In this chapter, we continue the discussion from Chapters 3 and 4 on one-sided error testing
for forbidden order patterns in sequences f: [n] — R. Again, the forbidden order pattern is a
permutation m = (7, ..., ) of [k], viewed here as a sequence of length k. Unlike the monotone
case, here we do not pose any restriction on the permutation discussed. We are interested in testing
for m-freeness, i.e., of not containing an order-isomorphic copy of 7 as a subsequence. Here, two
sequences = = (z1,...,2x) and y = (y1,...,yx) are order-isomorphic if for any i # j, x; < x; holds
if and only if y; < y;. That is, if the relative order of the elements in both sequences is the same.
In other words, f contains 7 if there exist k integers i1 < --- < it € [n] such that f(iq) < f(ip) if
and only if 7w(a) < w(b). Accordingly, f is 7-free if it does not contain the pattern 7.

The focus here is on query complexity; all of our tests run in time linear in the number of queries
they make. This is because they work by checking whether the queried subsequence contains the
forbidden pattern. But this in turn can be performed efficiently, building on an algorithm of
Guillemot and Marx [90] which determines whether a given sequence contains a fixed pattern in

time that is linear in the size of the sequence.

Distance function All results are stated here for the Hamming distance function, which is most
standard in property testing, but they also hold for the stronger deletion distance, defined as follows:
distger(f, ¢) is the minimal number of value modifications, deletions, and insertions needed to turn
f into g. This follows from the fact that the Hamming distance and the deletion distance of a

sequence f to m-freeness are always equal: Indeed, if S is a set of entries of a function f: [n] - R
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whose deletion turns f into a m-free sequence, then it is possible to turn f into a w-free sequence
using |S| value modifications by initializing T = S and iteratively applying the following until T
is empty: Find an « € T with a neighboring entry y ¢ T, set f(z) = f(y), and remove z from T.
This way, if f restricted to [n] \ S is w-free, then so is f after these value modifications.

In particular, this implies that the distance of a sequence f to w-freeness is closely related to
the maximum size of a set C of pairwise-disjoint m-copies in f: On one hand, if f is e-far from
m-freeness then we cannot delete all w-copies in C with less than en entry deletions, so |C| > en/|n|.

On the other hand, if |C| > en then trivially f is e-far from 7-freeness.

Organization of the results Below we present the results of Newman et al. [109] on the problem
of testing m-freeness. We then provide our results in Section 5.1.2. Our results stated here are in
the non-adaptive case, and seem to yield a relatively good general understanding of this case. All
results in [109] only consider one-sided testing, and we also follow this paradigm. An additional
discussion on a hierarchy of adaptivity in this problem can be found in the full version of the results

presented here [23].

5.1.1 Previous Work

We describe here the previous state of knowledge on testing pattern-freeness in the non-monotone
case; all results here are established in [109], and focus on one-sided tests. First, any pattern of
length k£ has a non-adaptive one-sided test making O(s_l/ kpl=1/ k) queries. This is the sample-
based test, that samples a uniformly random set of elements in the input sequence of the required
size and accepts the input (i.e., indicates that it is 7-free) if the queried subsequence is m-free. In
what follows, this test is called the sampler.

The second line of results concerns patterns of length 3. Due to symmetry considerations, it is

enough to consider the pattern m = (1, 3,2). For this choice of 7, it is shown that:

o)

e There is an adaptive one-sided e-test for m-freeness making (¢! logn) queries.

e Any non-adaptive 1/9-test for w-freeness has query complexity 2(y/n) — an exponential separ-
ation from the adaptive case! It is interesting to note that while the lower bound in [109] was
only obtained for one-sided tests, a similar lower bound for two-sided tests may be derived

using similar (yet more technical) ideas.

e There is a non-adaptive one-sided e-test for m-freeness making /n(c~!log n)O(l) queries.

Thus, the non-adaptive bounds for 7 = (1,3,2) are tight up to an (¢~ logn)?(M) factor.

The Q(y/n) non-adaptive lower bound from Section 5.1.1 actually applies to any non-monotone
pattern. Moreover, this bound can be strengthened for certain patterns: For any odd k, any
one-sided non-adaptive test for the pattern 7 = (1,k,k — 1,2,3,k — 2,...,(k + 1)/2) requires
Q(n'~2/(k+1)) queries.
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Discussion on previous results The results in [109] and in the previous two chapters essentially
settle two special cases: The monotone patterns of any length, and the patterns of length 3.
However, the general task of understanding the query complexity of optimal tests for w-freeness —
for any m — both in the adaptive and the non-adaptive case, has remained wide open. The major

open problems that Newman et al. proposed are the following.

Adaptive case Is it true that w-freeness is testable adaptively with query complexity polylogar-

ithmic in n for any pattern =7

Non-adaptive case How does the structure of a pattern 7 correlate with the query complexity of
an optimal (one-sided) non-adaptive test for m-freeness? In particular, do there exist infinitely

many patterns 7 for which 7-freeness is testable with query complexity that is O(n%99)?

5.1.2 Our Contributions

In this chapter, we address the non-adaptive case, achieving good (though not yet complete) under-
standing of this case. Along the way, we discover many interesting and surprising phenomena. The
details are presented below. We remark that additional results exploring how partial adaptivity
helps in the problem of testing 7-freeness, in particular for the pattern 7 = (1, 3,2), appear in [23].

Our first main result is an improved general upper bound that holds for all patterns.

Theorem 5.1. For any pattern m of length k > 3, w-freeness has a one-sided non-adaptive e-test

1 1
whose query complexity is O(e F1n' F-1).

This bound improves upon all previously known upper bounds for non-monotone patterns, as
the query complexity it suggests is better than both the sample-based upper bound and the upper
bound for patterns of length 3, as appeared Section 5.1.1.

At first glance, an upper bound of O(eiﬁnlfﬁ) seems to only be a slight improvement over
the O(s_%nl_%) sample-based upper bound. However, quite surprisingly, this upper bound is tight
in both n and ¢ for any k£ > 3. In other words, the optimal non-adaptive one-sided test for some

patterns is only slightly more query-efficient than the sampler!

Theorem 5.2. Let 7 be a pattern of length k > 3, and suppose that |m7=1(1) — 7= 1(k)| = 1. Then

1 1
the query complexity of any non-adaptive one-sided e-test for w-freeness is 2 S

This improves the non-adaptive lower bounds for any pattern of this type, whose length is
at least four. For the non-monotone patterns of length 3, this results determines the correct
dependence in e.

The combination of Theorem 5.2 with the results in Section 5.1.1 demonstrates a surpris-
ing phenomenon: While the deletion distance between the patterns m = (1,2,...,k) and m =

(k,1,2,...,k—1) is only 2, the query complexity of non-adaptive one-sided testing for m-freeness
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differs significantly from that of mo-freeness. For mi-freeness this query complexity is polylogar-
ithmic in n, and so 7 is the easiest to test among patterns of length k, while ma-freeness has a
query complexity of © (sfﬁnlfﬁ), making e one of those patterns that are hardest to test
with non-adaptive one-sided tests. The proofs of Theorems 5.1 and 5.2 appear in Sections 5.2
and 5.3, respectively.

The next lower bound is perhaps even more surprising. It provides (along with Theorem 5.1) an
almost tight bound on the query complexity of an optimal non-adaptive one-sided test for almost
all patterns, implying that this query complexity is usually only marginally better than that of the

most basic sample-based test.

Theorem 5.3. Let m be picked uniformly at random from all patterns of length k. The following
holds with probability 1 —o(1) (where the o(1) term tends to zero as k — o0): The query complexity

1 1
of any non-adaptive one-sided e-test for w-freeness is ) (5*mn1*m)‘

Both Theorems 5.2 and 5.3 are actually special cases of a general pattern-dependent lower
bound that we establish. This lower bound applies to any pattern, and depends heavily on the
structure of the pattern. We believe that this lower bound is tight (up to polylogarithmic factors)
for any pattern. Interestingly, it is not clear how to describe the lower bound in a compact closed
form, but given a pattern w of length k, the corresponding bound can be computed in constant
time (that depends only on k). Later, as an important special case of this strong yet hard-to-
digest bound, we provide a slightly weaker pattern-dependent lower bound that has a more natural
combinatorial characterization, and is therefore easier to analyze. See Theorem 5.8 and the resulting
Corollaries 5.9 and 5.10 for more details.

In order to describe our general lower bound, we shall first provide some definitions.

Definition 5.4. Let 7 = (7y,...,m) be a pattern of length k. A subsequence o of m is consecutive
if 0 = (m4,...,m;) for some 1 <1i < j <k;in this case we write o = w[i, j|.
A partition A = (o1,...,0¢) of the pattern m consists of consecutive subsequences o1 = 7[1,r1], o2

wri+ 1,72, ..., 00 = w[re—1 + 1, k], and its size is |A| = £.

A signed partition P = (A, S) of the pattern m consists of a partition A as above, and a sign
vector S = (s1,...,80) € {4+, —}. For any o; of length bigger than one, the corresponding sign s;
must satisfy the following. If mino; appears before maxo; in w, then the direction sign of o; is —,
and otherwise, the direction sign is +. The size of P is [A| = |S| = .

Let P be a signed partition as above. Define rg = 0, and for any 1 < i < {, denote the length
of o; by k; (so Zle ki = k). Consider the sequence fp: [k?] — R defined as follows. For any
1<j<kiand0<m <k—1, we take fp(rik +mk; + j) = m + mp,4;/2k for any 0 <i <l -1
where s; is +, and fp(rik+mk;+j) = (k—1—m)+m,4;/2k for any <i <{—1 where s; is a —.

Note that for any 0 < m < k — 1, the set of all entries x € [k?] satisfying m < fp(xr) < m+1

18 a w-copy. We say that such a w-copy is trivial. We say that P is unique if fp does not contain
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non-trivial m-copies, and denote by U(m) the set of all unique signed partitions of . Finally, the

unique signed partition number (USPN) of 7 is u(m) = maxpey(x) | P|-
Our lower bound for testing 7-freeness is closely related to the USPN of 7.

Theorem 5.5. Let m be any pattern. Any non-adaptive one-sided e-test for m-freeness has query
complexity §) (5‘1/“(”%1—1/%(”))'

The USPN of a pattern obviously depends only on the pattern (and not on the input sequence
size), so it can be computed in constant time, that depends only on k. Thus, given a pattern 7 and
parameters n, €, one can compute the lower bound obtained from Theorem 5.5 in constant time.

The proof of Theorem 5.2 follows from Theorem 5.5 by showing that for any pattern 7 of length
k which satisfies |7~(1) — 7= (k)| = 1, it holds that u(m) = k — 1; actually these are the only
patterns of length k whose USPN is k£ — 1, and no pattern of length k£ > 1 has USPN that equals
k, as can be derived from results that are discussed later.

We conjecture that the lower bound of Theorem 5.5 is tight up to a multiplicative term that is
polynomial in € and logn. That is, we conjecture that the USPN, u(rw), is the correct parameter

of  that determines how hard it is to non-adaptively test m-freeness using one-sided tests.

Conjecture 5.6. For any pattern w of any fixed length, m-freeness has a non-adaptive one-sided

e-test making O. (nl_l/u(“)) queries.

A multiplicative term of logn is necessary to make Conjecture 5.6 hold for monotone patterns
7 (for which u(m) = 1), since there is a lower bound of Q(logn) for testing monotonicity [66], that
can be generalized to testing m-freeness for any pattern m of length at least 2. For non-monotone
patterns, an even stronger conjecture can be given, namely that the number of queries required by

a non-adaptive one-sided e-test is ©.(n'~/*(™) (without the polylogarithmic term in 7).

Combinatorial characterizations related to the general lower bound Motivated by The-
orem 5.5, it is desirable to find natural necessary and sufficient combinatorial conditions for unique-
ness of a signed partition of a given pattern 7. Our next main result provides a useful sufficient

condition. For the result, we need some more definitions.

Definition 5.7. Let 0 = w[x,y] and o' = w[2',y'] of © be disjoint consecutive subsequences of
length at least two, and let ¥’ < m, M <y’ be the indices satisfying m,, = minz[z',y'] and mp =

max [z, y’]. We say that o’ is shadowed with respect to o if one of the following holds.
o &' >y, m< M, and my_1 > Ty
e ' >y, m>M, and my_1 < Tpy,.
oy <z, m< M, and wyiq < Tp.
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oy <z, m>DM, and Ty > T

An entangling of w is a collection E = (01, ...,04) of pairwise disjoint consecutive subsequences

of w, where o; = la;, b;] for any 1 <i <t, satisfying the following.

o For any 2 < j < t, the following holds. Either a; > by and min;<;mino; < Ta; <

max;<; maxo;, or bj < a; and min;<; mino; < Tp, < IMaX;<; Maxo;.
o Forany 2 < j <t, oj is not shadowed with respect to oy.
o Forany 1 </l <k, there exists c € E such that mino < ¢ < maxo.

For the above entangling E of w, define A(E) as the partition of w in which o1, ..., 0 serve as parts,
and any element of T not in \Ji_, 0; has its own part. Denote d(E) = |A(E)| = k — Y sepllol —
1). Finally, the entangling number of 7w is d(7) = maxg{d(E)} where E ranges over all valid

entanglings of m.

Theorem 5.8. For any pattern m and entangling E of 7, there exists S € {+, —}'E‘ for which the
signed partition P = (A(E),S) is unique. In particular, d(m) < u(w) for any pattern .

The following is an immediate yet important corollary of Theorems 5.5 and 5.8.

Corollary 5.9. For any pattern w, any non-adaptive one-sided e-test for m-freeness must make
Q (5_1/d(“)n1_1/d(”)) queries.

A useful simple special case of Corollary 5.9 is the following.

Corollary 5.10. For a pattern m = (my,...,7), let m(w) = maxj<i<k—1|miy1 — m|. Then
m(m) < d(m), and in particular, any non-adaptive one-sided e-test for mw-freeness must make
Q (a_l/m(”)nl_l/m(”)) queries.

Note that a pattern 7 of length k with [7=1(1) —7~1(k)| = 1 satisfies m(7) = k — 1, so Theorem
5.2 is actually a special case of Corollary 5.10.

Theorem 5.3 follows from Corollary 5.9 by observing that d(7) > k—3 holds w.h.p. for a random
pattern 7 of length k; actually, both d(7) and u(7) are concentrated in the values k — 2 and k — 3,
as u(m) = k — 1 holds with probability O(1/k).

There exist patterns 7 for which d(7) < u(w). In particular, partitions with a unique signed
form are not necessarily entanglings, so the sufficient condition for uniqueness from Theorem 5.8
is not a necessary one. For example, one can verify that 7 = (4,1,2,5,6,3) satisfies d(7) = 3
but u(m) = 4; a unique signed partition of size 4 for 7 is (A,.S) where A = ((4,1),2,5,(6,3)) and
S=(+,——+)

The following necessary condition for being a unique signed partition is easy to prove.

Observation 5.11. Let w be a pattern of length k and let P = (A, S) be a unique signed partition

for w. Then A satisfies the following conditions.
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o For any 1 < ¢ <k there exists 0 € A of length bigger than one, such that mino < { < maxo.

o Let 0 € A with |o] > 1. If maxo < k then there exists o' € A satisfying mino’ < maxo <
maxo’, and similarly, if mino > 1 then there exists o’ € A satisfying minog’ < mino <

maxo’.

The size |A| of the largest partition A of 7 satisfying the conditions in Observation 5.11 might
be bigger than the USPN of 7. For example, the partition A = ((5,1),3,2,7,6,(8,4)) of the pattern
= (5,1,3,2,7,6,8,4) satisfies these conditions, but one can verify that it is not a unique signed
partition. By Observation 5.11, none of the other partitions of 7w of size 6 have a unique signed
form, so u(m) < 6 = |A|. In fact, u(7) = 5 in this case, as ((1,3),(2,7), (6,8)) is an entangling.

Permutation-dependent hierarchy in the non-adaptive case

The statement of Conjecture 5.6 suggests that there is a pattern-dependent hierarchical behavior
of the query complexity for one-sided non-adaptive testing of m-freeness as a function of w. The

following result verifies that such an hierarchical structure indeed exists.

Theorem 5.12. For any two positive integers k > 2 and 1 < £ < k — 1, there is a pattern w of
length k with m(7) = £, for which the optimal non-adaptive e-test makes 0. (nl_l/e) queries, where

the © notation hides a term polynomial in logn and e.

In particular, we conclude that for any positive integer ¢, there exist infinitely many patterns =
for which the query complexity of one-sided non-adaptive testing of m-freeness is (:)a(nl_l/ %). This
answers and generalizes the open question of Newman et al. [109], who asked whether there exist
infinitely many patterns 7 that have a non-adaptive one-sided test for w-freeness making at most
O(n) queries (for a fixed ¢).

We concluding by commenting that the full version of the work presented here [23] also provides
results showcasing a hierarchy of adaptivity for this problem (specifically when the pattern is

m = (1,3,2)), settling an open question by Canonne and Gur [42].

5.1.3 Discussion and Open Problems

The problem of (one-sided) testing for m-freeness demonstrates a wide array of interesting phe-
nomena: An exponential separation between the adaptive and the non-adaptive case, surprising
hardness results and pattern-dependent hierarchical behaviors in the non-adaptive case, and a hier-
archy of adaptivity that is the first of its kind. We believe that these results serve as a strong
motivation to try to achieve a complete understanding of the problem. Below we suggest several

possible directions for future research.
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The adaptive case Testing m-freeness in the adaptive case is still far from being understood. In
particular, the question whether all patterns are testable adaptively with number of queries that
is polylogarithmic in n is still wide open, even if we allow for two-sided tests. At this point, this

seems to be the most intriguing open question regarding testing m-freeness.

Improving bounds in the non-adaptive case While our understanding of the non-adaptive
case is far better than that of the adaptive case, there are still gaps in it. The main goal here
is to obtain good pattern-dependent upper bounds: Conjecture 5.6 states that our lower bound is

actually tight, and it will be obviously interesting to understand if it holds.

Understanding the USPN Another interesting direction would be to obtain a simple complete
combinatorial characterization of the USPN of any given pattern. Currently we have lower and
upper bounds for the USPN of a pattern (Theorem 5.8 and Observation 5.11, respectively), that
are usually tight for small patterns, and we know that the USPN of a pattern is computable in

constant time.

Two-sided testing All known results so far are for one-sided testing, aside from the two-sided
lower bound in the partially adaptive setting [23]. It is worth to note that the Q.(n'/2) lower bound
for one-sided testing of all non-monotone patterns can be (carefully) translated into the same bound
for two-sided tests. However, the proofs of other one-sided non-adaptive lower bounds do not seem
to translate well to the two-sided setting. Therefore, it will be interesting to understand what is
the query complexity of optimal two-sided tests, both in the adaptive and the non-adaptive case.
Specific questions of interest include (but are not limited to) the following: When do the non-
adaptive two-sided lower bounds match the one-sided ones? Can one obtain a general two-sided
upper bound that beats the tight one-sided upper bound of Theorem 5.1 for patterns of size bigger

than three? Does two-sidedness help testing in the adaptive case?

Families of forbidden order patterns It will be interesting to investigate the case where more
than one order pattern is forbidden (note that there are families for which the question does not
make sense; for example, the famous theorem of Erdés-Szekeres [61] implies that any sequence of
length at least k? — 2k + 2 must contain one of the monotone patterns of length k). As mentioned
in [109], all one-sided upper bounds from the single-pattern case carry over to the multiple-pattern
case, but the lower bounds do not; for example, there exists a family of two non-monotone patterns
of size 3 that has a one-sided non-adaptive test whose query complexity is polylogarithmic in n.
Some specific open questions of interest: Is the upper bound from Theorem 5.1 tight in this case?

How does the non-adaptive family-dependent hierarchy look like?

Forbidden order patterns in multi-dimensional structures How does m-freeness behave in

structures of higher dimensions, such as the hypergrid or the Boolean hypercube? The sample-based
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upper bound from subsection 5.1.1 still holds in these cases, provided that the input contains many
pairwise-disjoint copies of the forbidden structure w. However, in contrast to the one-dimensional
case, it is then no longer clear whether being far from m-freeness implies that the input indeed has
many pairwise-disjoint m-copies. Interestingly, recent work of Grigorescu, Kumar, and Wimmer [89]

gives strong evidence that testing order pattern freeness on the hypercube is hard.

5.2 Upper Bound

In this section we provide the proof of Theorem 5.1. The test that is used to prove the upper
bound is one-sided, and indicates that the input sequence f: [n] — R has a m-copy only if it
finds one. Thus, the testing problem reduces to the following search problem: Given query access
to un unknown sequence f that is e-far from m-freeness, the goal is to find a m-copy in f. Here
and henceforth, we omit floor and ceiling signs, as they do not make an essential different in the
arguments. The proof of Theorem 5.1 follows immediately from the next lemma, which provides a

sublinear algorithm to find a 7w-copy in a sequence f, assuming that f is far enough from m-freeness.

Lemma 5.13. Let m be a pattern of length k > 3, and suppose that f: [n] — R is e-far from

19 where ¢, depends only on k, and n is large enough (as a function

w-freeness for some € > cpn”
of k). Then there is an algorithm that finds, with probability 2/3, a copy of ® in f by querying

1 1
O(e™#1n'"51) entries in f.

Remark 5.14. Lemma 5.13 is stronger than what is needed to obtain a one-sided test, in the sense
that € is allowed to scale with n; for the proof of Theorem 5.1 a lemma that applies to a constant €
would have been sufficient. However, the added flexibility of the lemma reflects that the statement

of Theorem 5.1 would still be true should we take €' as a slowly-growing function of n.

Proof. The proof idea is as follows. Given an input sequence f: [n] — R, we partition [n] into
a collection Z of n/m intervals of size m each, for a suitable choice of m; we may assume, for
convenience, that m divides n. Suppose that f is e-far from w-freeness. Then f contains a set A
of en/k pairwise disjoint m-copies. We consider two cases, where for each of the cases the queries
made are different. Our actual algorithm is a combination of the algorithms for each of the cases.

In the first case, most m-copies in A have at least two entries in the same interval; the algorithm
for this case queries a set of whole intervals, chosen uniformly at random, and a set of single
elements, also chosen uniformly at random. The analysis of this case does not use the fact that
m is a permutation. In the second case, most m-copies in A do not have two entries in the same
interval, and it can be shown that the sampler (which samples entries of f uniformly at random)
suffices for this case. Here we do use the fact that 7 is a permutation, and the analysis actually

shows that the required number of queries is much smaller (for constant €) than in the first case.
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We now give the full details. Pick the interval size to be m = (en)'~Y* =1 and write 7 =
(m1,...,7). The m-copies are represented in A as k-tuples t = (¢1,...,t;) where ¢; is the location
of the element corresponding to m; in the copy. Write A = B U C, where B contains all 7-copies
from A that have at least two entries in the same interval, and C contains all w-copies that have at

most one entry in each interval. Then either |B| > en/2k or |C| > en/2k.

Case 1: |B| > en/2k Our algorithm for this case is described as follows. We first pick aset Q1 CZ
of intervals, where every I € 7 is included in @, with probability p = em/en = c(en)~V/ (=1,
independently of other intervals. Here ¢ = 100k? depends (polynomially) on k. Next, we pick a
set Q2 of elements from [n], where each element is added to Q2 with probability p, uniformly and

independently of other elements. Up until now, the algorithm does not make any queries.

An independent sampling trick Variants of the following simple idea are used several times
along the chapter. Let Fg,unq be the event that the subsequence of f induced by ()1 and )2 contains
a m-copy. Let Eypi, be the event that [Q1| > 100c/e or |Q2| > 100cm/e. By Markov’s inequality,
Pr(FEyig) < 1/50. If Ey,;g occurs, then the algorithm stops without making any queries (and hence it
does not find a m-copy in f). If Ey;; has not occurred, then the algorithm now queries all elements
induced by @1 and Q2. Thus, the algorithm finds a m-copy if and only if Ff,unq occurs and Ey;e does
not occur. The number of queries made is at most 200cm /e = O(a_ﬁnl_k%l), as desired. The
probability that the algorithm finds a 7m-copy is at least Pr(Egund) — Pr(Ehig) > Pr(Esound) — 1/50.
Thus, it remains to show that Pr(Efoung) > 2/341/50 (note that we consider here the unconditional

probability of Efyund, and in particular, we do not condition on Ei;; not happening).

Analyzing the event Ef,unq For each I € Z, let t; denote the number of 7-copies from B
that have at least two entries in I, and let t = ZIeI tr, so en/2k <t < en. let X be the random
variable that counts the number of m-copies from B that have at least two entries in some I € ;.
The expectation of X is E[X] = tp > e¢m/2k = 50km, and the variance of X is bounded by

E[X?] < pZt% < pm?en/m = cm?
IeT
where the second inequality follows from convexity arguments, using the facts that 0 < ¢; < m for
every I and > t; =t < en. Thus, the standard deviation of X is bounded by m+/c = 10km. By
Chebyshev’s inequality, we get that X > m with probability at least 9/10.
Assume now that X > m, that is, there exists a set B’ C B of m m-copies that have at least
two of their entries in intervals from @;. For each such copy, the event that all other k — 2 (or

k=2 — ck_2/m, and is independent of the

less) entries of it are in @2 has probability at least p
corresponding events of the other copies in B’. Thus, the probability that none of these events

occurs is bounded by (1 — #=2/m)™ < e < 1/100. This finishes the proof.
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Case 2: |C| > en/2k We start with some notation. For a copy t = (t1,...,tx) € C, we define

I;(t) as the interval in Z containing ¢;.

Non-extremal 7w-copies For any interval I € 7, let y3 < ... < y,,, be the elements of
fU) = {f(z) : * € I}, and let y; = Yromser) and yr = Ylm—em/6k|- We say that a m-copy
t = (t1,... 1) is top-high if f(tz—1()) > yiil(k)(t), and bottom-low if f(t 1)) < yljrﬂ(l)(t)' A
copy that is neither top-high nor bottom-low is said to be non-extremal. In other words, a m-copy is
non-extremal if its highest point is not too high with respect to the interval it lies in, and similarly,
its lowest point is not too low with respect to its interval. Note that the number of top-high -
copies in C is bounded by en/6k (as each interval contributes no more than em/6k such copies),
and similarly for the number of bottom-low m-copies. Thus, there exists a set ' C C of en/6k
non-extremal m-copies.

The main idea is that with sufficiently many queries, the sampler — a sample-based algorithm
to find a m-copy — will be able to capture all entries of a non-extremal 7-copy t = (t1,...,t;) € C’
besides the lowest entry ¢;-1(;) and the highest entry ¢,-1(;), which will be replaced by a small
enough entry from I.-1(1)(t) and a large enough entry from 1,1 (t), respectively. Note that this

is a valid m-copy.

Analyzing the sampler Let p = cm/en = c(en)”V/#=1 as above. Let Egyunq be the event
that a subsequence g of f, constructed by putting each entry of f in it with probability p, contains
a m-copy. Using the sampling trick from the first case, it is enough to show that Pr(Ftunq) >
2/3+41/50. Before we continue, we define the events A;, By, F; for any m-copy t = (t1,...,tx) € C'
as follows. A; is the event that all entries {tﬂ.—l(]’)}?;% of t are included in g, so Pr(A4;) = p*=2 =
c*=2/m. By is the event that g contains z € Le1y(t) and o' € I -1(,(t) such that f(z) <
ftz—1(1)) and f(2') > f(tz-1(k)), so Pr(B;) > 1 —2(1 — p)*™/%k. Finally, E; = 4, N B; C Efouna
indicates that g contains a m-copy. Note that any event A; is independent of all other events, and
By is only dependent on events By where I—1(1y(t) = Ii—1(q)(t') or L1y (t) = Ii—1(3)('); there
are at most 2m such events for each B;.

The analysis of patterns of length 3 differs from that of longer ones.

7 of length k& > 3. The probability that none of the events A; for ¢ € C’ holds is at most
(1 — pF2)lC < exp (—p"2en/6k) = exp(—c"2(en)/*=1) /6k) < 1/10. Suppose then that A,
holds for some ¢ € C'. The probability that B, does not occur is bounded by 2(1 — p)e™/6k <
2exp (—pem/6k) = 2exp (—em? /6kn) = 2 exp(—2~2/(k=Dp1=2/(k-=1)¢/6k) < 1/10 for large enough
n. Thus, Pr(Efouna) = Pr(3t: A A By) > 8/10 > 2/3 4+ 1/50 in this case, as desired.

7w of length k = 3. Let X; denote the indicator random variable of F; and let X = Ztec/ X;.
For every t € C', we have Pr(4;) = p = ¢/m and Pr(B;) > (1 — (1 — p)™/18)2 > (1 —
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exp(—pem/18))% = (1 — e=/18)2 > (22 /400, where the last inequality holds when ¢ < ak~2 for
a small enough «, as e™ < 1 —92/10 for small enough . Thus, E[X] = >, - Pr(A;) Pr(B;) >

2.2 3

en ¢ ce® _ ¢ 5/2,,1/2
8 I00 = 7o00€ /~m/“. On the other hand,

Var(X) =) Var(X;)+ Y  Cov(X;, Xy) < E[X] + 2m|C’| max Pr(4,) Pr(4y) Pr(By), (5.1)
tec’ t#t'eC ’
where the inequality builds on the following two facts. The first is that Cov (X, Xy) < E(X; Xy) <
Pr(A;) Pr(Ay) Pr(By), as the events A;, Ay, B; are mutually independent. The second fact is that,
for any t € ', Cov(X}, Xy) = 0 for all but 2m of the tuples ¢, as discussed above.

The second term in (5.1) is bounded by 2c¢?\/en. Therefore, the standard deviation of X is
bounded by \/W—i— V2ce'/*nl/* < E[X]/10, where the bound on ¢ in the statement of the lemma
is chosen so that the last inequality holds (note that el/Apl/4 = 5/2p1/2 for ¢ = n~=Y9 and thus the
smallest possible value of € for which this proof works is ©(n~1/?)). Using Chebyshev’s inequality,
Pr(Efouna) = Pr(X > 0) > 9/10 > 2/3 + 1/50, concluding the proof. O

5.3 Lower Bounds

In this section we provide proofs for our lower bounds in the non adaptive case. These are Theor-
ems 5.2, 5.5 and 5.8. We start with the proof of Theorem 5.5. Then, we use it to finish the proof
of Theorem 5.2, which requires us to prove a relatively simple special case of Theorem 5.8. Finally,
we prove Theorem 5.8 in its full generality. We chose to present the proofs in this order for the sake
of readability, as the proof of Theorem 5.8 will be easier to understand after tackling the special

case considered in Theorem 5.2.

Proof of Theorem 5.5. Fix a pattern 7 of length k, and let P = (A, S) be a unique signed partition
of 7 of size u, where A = (01,...,04) and S = (81,...,8y). Let 0 < e < gg(k) and let n > ng(k)
be an integer, where eo(k) < 1/2k is small enough as a function of & and ng(k) is large enough as
a function of k. We may assume, for convenience, that m = n/k is an integer and that em is an
integer bigger than k (translating the result to any n and e comes at a “price” of a multiplicative
constant that depends only on k).

Recall that a one sided e-test for m-freeness must always accept m-free sequences, and reject
sequences that are e-far from m-freeness with probability at least 2/3. Thus, any one sided test T'
for m-freeness must always accept its input if the subsequence it queries is 7w-free. This follows from
the fact that for any 7-free sequence g: [q) = R, any n > g and any 1 <t; < ... <ty < n, there
exists a m-free sequence f: [n] — R such that f(t;) = g(j) for any j =1,...,¢. That is, any m-free
queried subsequence might possibly be contained in a w-free sequence, and hence must be accepted
by any one-sided test. Therefore, any one-sided test for m-freeness can be seen as a non-adaptive
search algorithm for m in f, whose goal is to find a 7w-copy in an unknown input sequence f that is

guaranteed to be e-far from 7-freeness, with success probability at least 2/3.
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We use Yao’s principle, constructing a family F of sequences f: [n] — R that are e-far from
m-freeness, which satisfies the following property for some constant ¢ > 0. For any 1 <t < ... <
ty < n where ¢ < cpeVunpl=1/u_ it holds that

Pr¢c 7 (subsequence of f in indices ¢1,...,t, contains a m-copy) < 2/3. (5.2)

Combining (5.2) with a standard Yao-type argument completes the proof, as it implies that any
(possibly probabilistic) search algorithm for 7 in f, where f is chosen uniformly at random from

—1/upl=1/u queries to have success probability 2 /3.

F, must make cie
Constructing F In the rest of the proof, we present a family 7 = F(P) for which (5.2) holds.
Let us describe the structure of the sequences f € F before diving into the technical details. A
sequence f € F looks like a blowup of fp, where each blown up part is planted, starting at a
random location, inside a longer interval (making it hard for a non-adaptive test to “guess” where
each part is located inside its interval). More specifically, each part o; of the partition A corresponds
to an interval I; in f whose length is |o;|m. In this interval, there are en copies of o; ordered in
an increasing manner if s; is a 4+, and a decreasing manner if o; is a —, where each o;-copy is a
consecutive subsequence of f. The value of f on these o;-copies (for each i) is “aligned” with other
intervals, so that f contains a set of en pairwise disjoint m-copies, without containing any other
m-copy (here we use the fact that P = (A, S) is unique). The rest of the elements in each interval
are chosen in a manner that does not create any other m-copy. To make F “random enough,” the
points where the consecutive copies begin in each interval are chosen uniformly at random. This
assures that the probability for each k-tuple of entries in f to induce a w-copy is sufficiently small,
proving (5.2).

We now provide the technical details. For every 1 < i < w, write o; = 7[j;—1 + 1, j;], where
jo =0andlet §; = j;—7j;—1 denote the length of 0;. For any 1 <1i < w,let I; = {mj,—1+1,...,mj;}.
A sequence f: [n] — R is in F if for any 1 < i < u there exists 0 < n; < (1 — ke)d;m, such that

the following conditions hold.

e For every 1 < i < u where s; is a +, and every 1 <[ < §; and 0 < r < en — 1, we take
f(mji—1 +n; +76; +1) =r+mj,_,+1/2k. We also take f(x) = —1 for any mj;—1 +1 < x <
mji—1 + ni, and f(xz) = n for any mji_1 +n; +end; +1 < x < my;.

e For every 1 < ¢ < u where s; is a —, and every 1 < [ < §; and 0 < r < en — 1, we
take f(mgji—1 +mni +1rd; +1) = (en —1 —7r) + m;,_,41/2k. We also take f(x) = n for any
mji—1 + 1 <x <mj—1 +n;, and f(x) = —1 for any mj;—1 + n; + end; + 1 <z < myj.

Any f € F is e-far from n-freeness Any such f is e-far from 7w-freeness. Indeed, for any
0 <r <en — 1, the subsequence of f consisting of all k entries x € [n] for which r < f(z) <r+1

is a m-copy, so there is a set Dy of en pairwise-disjoint 7-copies in f.
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Any f € F does not contain non-trivial m-copies On the other hand, f does not contain
any other (i.e., non-trivial) m-copy. To show this we use the fact that P = (A, S) is a unique signed

partition.

Claim 5.15. Let f € F. If f contains a non-trivial w-copy, then it contains a non-trivial copy

without the values —1 and m.

Proof sketch. Recall that k < em. The proof follows by applying iteratively the following fact, and
its symmetric counterpart. If ¢ = (¢1,...,tx) is a m-copy in f, and if there exist 0 <7 < en—1 and
i € [k] such that » — 1 < f(t;) < r, but there is no j € [k] for which » < f(¢;) <7+ 1, then f also
contains a m-copy created by the following “lifting process,” that replaces all entries with values
between r — 1 (inclusive) and r (exclusive) with entries whose values are bigger than r and smaller
than r + 1.

If r > 0, we replace any t; satisfying r — 1 < f(¢;) < r with the unique entry ¢’ satisfying f(¢') =
f(t;) 4+ 1. If r = 0 we replace t; with the closest entry ¢ among those satisfying 0 < f(¢') < 1. O

Suppose now to the contrary that f contains a non-trivial m-copy in the entries 1 < ... <
x € n, without the values —1 and m, and let R = {|f(z;)] : 1 <i <k} C {0,1,...,en — 1}, so
2 < |R| < k. We now arbitrarily add elements from {0,1,...,em — 1} to R to obtain a set R’ of
size exactly k.

Let g be the subsequence of f over the set of entries W(R') = {w € [n] : [ f(w)] € R'}. In
particular 1, ...,z € W(R'), so g contains a non-trivial m-copy. But this is a contradiction — the
nature of our construction (and in particular, the choice of signs) implies that ¢ is order-isomorphic
to the sequence fp given in Definition 5.4, which does not contain non-trivial 7-copies (as P is

unique). Thus, the only 7-copies in f are the trivial copies that come from Dy.

Analysis: F satisfies desired conditions Finally, we show that the probability for a k-tuple
1<ty <... <ty <n toinduce a m-copy in a sequence f € F chosen uniformly at random is
sufficiently small. We may restrict ourselves to tuples containing exactly §; entries in I; for any
1 < < u, as these are the only tuples with positive probability to induce a m-copy. Suppose that
f € F contains a m-copy in entries ¢; < ... < t;. This copy must come from Dy, and so there
exists some 0 < r < en — 1 such that r < f(¢;) < r+ 1 for any 1 <1 < k. The values of r and
tj1stjs, ., t5, determine nq,...,n, uniquely. In other words, f is the only sequence, among all
|F| > (n/2k)" > (2k)"*n" sequences from F, that has a 7-copy of height between r and r + 1
whose j;-th entry lies in ¢;,, for any 1 < ¢ < u. In total, only at most en such possible choices

f € F have a m-copy whose j;-th entry lies in t;,, for any 1 < ¢ < . Thus, we have:

Prc 7 (subsequence of f in indices ¢;,,...,t;, is contained in a m-copy) < — <
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We are now ready to finish the proof of (5.2). Pick ¢ = (3k)™*/*, and let t = (ty,...,t,) with
1<t <...<ty<nbea g-tuple, where ¢ < cpeVunpl=1/u ¢ contains (Z) < q¢* u-tuples, so by a
union bound, the expected number of u-tuples contained in a m-copy (over a uniform choice f € F)
is less than (2k)Feqn'~" < 2/3. Thus, the probability that the subsequence of f on t contains a
m-copy is less than 2/3, as desired. O

Proof of Theorem 5.2. Using Theorem 5.5, it is enough to show that u(w) = k — 1 for any pattern
7 of length k satisfying |[7~1(1) — 7=!(k)| = 1. Let ® = (m1,...,m) be a pattern of length k, and
assume, without loss of generality, that 7, = 1 and w41 = k for some 1 < ¢ < k — 1. We take
the following signed partition P = (A, S) of size k — 1. A = (01, ...,0k—1) where o; consists of the
single element 7; for any i < ¢, oy = (1, k), and o; is the single element ;41 for any ¢ > ¢. The
sign vector S = (s1,...,8k—1) is defined as follows. s; is a —, and for any ¢ # ¢, s; is a + if and
only if m; > my1.

We now show that P is unique, implying that u(w) > |P| = k — 1, as needed. Consider
the sequence f = fp, as defined in Definition 5.4. We partition the entries of fp into intervals
Ii,...,I;_1, where I; contains all entries that participate in the o;-part of some m-copy in fp. In
other words, I; = {(i — 1)k +1,... ik} forany 1 < i< ¢, [, ={({—1k+1,...,({+ 1)k} and
I ={ik+1,...,(i+ 1)k} forany £ <i <k — 1.

Let ¢ = (q1,-..,q¢) be a m-copy in fp. The following claim sheds light on the structure of ¢
with respect to the intervals I1,..., I_1.

Claim 5.16. For any i =1,...,k let ind(i) denote the index of the interval containing q;, that is,
@i € Linags)- Then ind(i) > i for any i < /¢ and ind(i) <i—1 for anyi > £+ 1.

Proof. Suppose to the contrary that ind (i) < i for some i < ¢, and consider the smallest ¢ satisfying
this. Then ind(i — 1) = ind(i) = ¢ — 1, that is, ¢;—1,¢; € I;_1. This is a contradiction: If 7; > m;_;
then s;_1 is a —, so the subsequence of f restricted to I;_; is decreasing, contradicting the fact
that ¢ is a m-copy, that must satisfy f(¢;) > f(gi—1) since m; > m—1. If m; < m;—1 then s, is a
+ and, symmetrically, we have a contradiction. Thus, ind(i) > ¢ for any ¢ < ¢. The proof that
ind(i) <i—1 for any i > ¢+ 1 is symmetric. O

As a special case of Claim 5.16, we conclude that gy, g1 € Iy for any m-copy ¢ = (q1, ..., qx)-
This implies that fp(q/) = r + 1/2k and fp(qe+1) = 7 + 1/2 for some integer r (since the only
length-2 subsequences of f inside I, that are increasing are (r + 1/2k,r + 1/2), for any integer
0 <r <k-—1). Hence, for any i # ¢,¢+1, ¢; must be the unique entry satisfying f(¢;) = r+m;/2k.

We conclude that fp does not contain non-trivial m-copies, so P is unique. O

The proof of Theorem 5.8 is based on ideas that are similar to those of the proof of Theorem 5.2,

and in particular, a generalized form of Claim 5.16 serves as an important tool in the proof.
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Proof of Theorem 5.8. Let m be a pattern of length k, and let £ = {71,..., 74} be an entangling of
7 whose resulting partition A = A(F) = (01,...,04) is of size d = d(m). For any 1 < ¢ < t, denote
by A(£) the unique index satisfying 7o = 0. For any 1 <i < d, write 0; = 7[ji—1 + 1, js] where
jo =0 and jg = k. We choose the sign vector S = (s1,...,4) as follows.

e For any 1 < i < d where o; contains more than one element, s; is a + if mino; lies after

max o; in m, and otherwise s; is a —.
e For any ¢ < A(1) where o; is a single element, s; is a + if and only if 7j, > 7, 11.
e For any ¢ > A(1) where o; is a single element, s; is a + if and only if 7;, < 7j,_1.

To finish the proof, we shall show that the signed partition P = (A, S) is unique, implying that
u(m) > d = d(m). For this, we need to show that f = fp does not contain non-trivial m-copies. As
in the proof of Theorem 5.2, for any 1 < i <dlet I; = {kj—1 +1,...,kj;}. Let ¢ = (qu,...,qx) be

a m-copy in fp. The following claim is the equivalent of Claim 5.16 for our more general case.

Claim 5.17. For anyi=1,...,k let ind(i) denote the index for which g; € Linqqy- Then ind(j;—1+
1) > for any i < A1) and ind(j;) <@ for any i > A(1).

Proof. We shall prove the claim for i < A\(1), as the proof for i > \(1) is symmetric. Suppose to
the contrary that there exists ¢ < A\(1) for which ind(j;—1 + 1) < ¢, and consider the smallest such
i. Then ind(j;—2+ 1) >i—1,and so ind(j) =i — 1 for any j;_o+1 < j < j—1 + L.

We show that I;_; does not contain a copy of 7[j;—2 + 1, ;-1 + 1], leading to a contradiction.
If |o;—1| = 1 then the choice of the sign s;—1 is a + if 7;,_,41 < 7j,_,, and a — otherwise; in the
first case, the entries in I;_; are increasing and so it cannot contain 7[j;—;, ji—1 + 1], which is a
decreasing sequence, a contradiction. In the other case we also get a contradiction, symmetrically.
Thus, from here onward we may assume that o;_1 contains more than one element.

The choice of the sign s; 1 implies that the only o;_i-copies in the subsequence of fp on the
interval I; 1 are the trivial ones, i.e., those that contain all |o;_1| elements between r and r + 1 for
some integer 0 < r < k—1. Thus, we may assume that r < fp(q;) < r+1forany j;_o+1 < j < ji_1.

Without loss of generality, assume that s;_1 is a +; this corresponds to the case where max o;_1
lies before min o;_1 in 7. Since E is an entangling, we know that o;_1 is not shadowed with respect
to ox1)- This means that 7;, ,4+1 < maxo;_1, and so fp(gj, ,+1) < 7+ 1. But this contradicts
the fact that ind(j;—1 + 1) = ¢ — 1: All |oy_1]| entries in I;_; whose value is between r and r + 1
are assigned to gj, ,4+1,...,¢j,_,, and all entries & of I;_; that come after these entries satisfy

fp(z) > r+ 1. In particular, ¢j, ,4+1 € Ii—1 so fp(gj,_,+1) > r + 1, a contradiction. O

To show that ¢ is a trivial m-copy, we prove the following claim by induction.

Claim 5.18. There exists an integer r = r(q) where 0 < r < k — 1, satisfying the following. For
any 1 <1 <, and any jrpy-1 + 1 < j < jaw), i holds that q; € Iy, and more specifically,
frlg) =r+m;/2k.
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Proof. The proof is by induction on £. By Claim 5.17, Tjray_1+1s - Giny € Ian)- By our choice of
the sign sy(1), there must be some integer 0 < r < k — 1, such that for any jy1)—1 +1 < j < jx),
q; is the unique entry of fp satisfying fp(q;) = r + m;/2k. This settles the case £ = 1.

Now let £ > 1, and assume that fp(q;) = r + m;/2k for any jyp)—1 +1 < j < jy) where
1 < ¢ < (. We need to show that fp(q;) =+ m;/2k for any jyp—1 +1 <7 < jae)-

For any j, j” € [k] for which we already know that fp(q;/) = r+mji/2k, fp(q») = 1+ mjn 2k,
and 7y < mjn, it must be true that fp(q;) = r + m;/2k for any j satisfying 7j < m; < mj». To see
this, note that the number of entries of fp with value between fp(g;/) and fp(g;») (not including
fp(aj), fp(gj») themselves) is exactly mj» — w7 — 1. Since ¢ is a m-copy, it also contains exactly
mjn —mjy — 1 entries with value between fp(g;/) and fp(g;»), so these entries of ¢ must be precisely
all entries of fp whose value lies in this range.

Without loss of generality, assume that A(£) < A(1) (that is, 7, = o) lies before 71 = 01y in
7). Since E is an entangling, we know that m; < Ty < T for some mj, wjn € Jp oo 7. By the
previous paragraph, fp(gj, ) =7+ 7, /2k, also implying that ind(j)) = A(¢). By Claim 5.17,
ind(jx—1 +1) > A(£), so we get that ind(j) = A(£) for any jyp—1+1 < j < jy). Considering our
choice of the sign s, it follows that fp(q;) = r + m;/2k must hold for any jy)—1 +1 < j < jxe)-

This concludes the inductive proof. ]

With Claim 5.18 it is easy to finish the proof. Since E is an entangling, there exist 1 < £,/ < d
such that 1 € 7, = oy(y) and k € 7 = o\(pr), implying that fp(qz—1(1)) = 7+1/2k and fp(gz—1(x)) =
r 4+ 1/2 for some 0 < r < r+1. Thus, r < fp(g;) < r+1 for any 1 < j < k. Since there are
exactly k entries € [k?] for which r < fp(x) < r + 1, ¢ must be a trivial m-copy. Therefore, P is

unique. O
We finish with an (easy) proof of Theorem 5.3 that builds on Corollary 5.9.

Proof of Theorem 5.3. Let m = (m1,...,m) be a pattern of length k chosen uniformly at random.
Without loss of generality assume that m; = 1,7; = k for some ¢ < j. The probability that
miy1 < kY or mi_q > k— k3% or |i — j| < k3% is O(k~'/*). Conditioning on the event that
none of the above happens, the probability that there exists no i + 1 < =z < j — 1 for which
mp < k3% and w41 > k — k*/* is also bounded by O(k~'/*) (it is actually exponentially smaller
than that). If none of these events happens, then d(m) > k — 3, as there exists some i < z < y for
which ((7z, Tz41), (1, Tit1), (mj—1,k)) is an entangling. Indeed, (1,7;11) and (7j—1,k) cannot be
shadowed with respect to (7w, 7z+1), and the two other conditions of an entanglement hold since
Ty < Tit1,Tj—1 < Tgt1. Thus d(m) > k — 3 with probability at least 1 — O(k_1/4), as desired.

As an added bonus, note that Pr(d(7) > k —2) > 19/24 — O(1/k): Suppose that i > 1, j < n,
and j > i+ 2 (all of these hold with probability 1 — O(1/k)). Consider the event where either
max{m_1,miy1} > mj—1 or min{mj_1, 741} < miy1. This event has probability 19/24, and if it

occurs, one can verify that d(7) > k — 2. O
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Part 111

Understanding Locality
in Structured Property Testing
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Chapter 6

Testing Local Properties:

Follow the Boundaries

The results in this chapter appear in [21].

6.1 Introduction

In this chapter we focus on testing of local properties in structured data. The objects we consider

are d-dimensional arrays, where d is a positive integer, viewed as a constant. A d-dimensional

array of width n, or an [n]%-array in short, is a function A: [n]¢ — ¥ from the hypergrid [n]? to

the alphabet 3, where the alphabet ¥ is allowed to be any (arbitrarily large) finite set; we stress
that the size of X is usually not required to be bounded as a function of the other parameters. For

1

example, a string is an [n]*-array, and the commonly used RGB representation of images is basically

Z_array over {0, 1,...,255}3, where the three values corresponding to each pixel represent the

an [n]
intensity of red, green and blue in it.
We call a property local if it can be characterized by a family of small forbidden consecutive

d_array A in location (i1, ...,iq) €

patterns. Here, a [k]%-array S is a (consecutive) subarray of an [n]
[n—k+1)4if Aliy +41— 1,...,ig +ja — 1) = S(j1,...,ja) for any ji,...,jq € [k]. Formally, a
property P of [n]%-arrays over an alphabet ¥ is k-local (for 2 < k < n) if there exists a family F of

d

[k]4-arrays over X so that the following holds for any [n]%-array A over X:

A satisfies P <= None of the (consecutive) subarrays of A is in F.

For P as above, we sometimes write P = P(F) to denote that P is defined by the forbidden family
F. As we shall see soon, many interesting properties of arrays (including a large fraction of the
array properties that were previously investigated in the literature) can be characterized this way.

The main contribution of this chapter is a generic one-sided error non-adaptive framework to

test k-local properties. In some cases, our method either matches or beats the best known upper
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bounds on the query complexity (although the running time might be far from optimal in general).
We show the optimality of our method by proving a matching lower bound for non-adaptive one-
sided tests, as well as a (weaker) lower bound for two-sided tests.

In order to demonstrate the wide range of properties captured by the above definition, we
now present various examples of properties that are k-local for small &, including some of the
most widely investigated properties in the property testing literature, as well as properties from
areas of computer science that were not systematically studied in the context of property testing.
In what follows, the sum of two tuples x = (z1,...,24),y = (y1,...,yq) is defined as the tuple

(21 +y1,...,Tq+ yq); additionally, e’ denotes the i-th unit vector in d dimensions.

Monotonicity Perhaps the most thoroughly investigated property in the testing literature: see
e.g. the entries related to monotonicity testing in the Encyclopedia of Algorithms [43, 116]

and the references within. An [n]?

-array A over an ordered alphabet ¥ is monotone (non-
decreasing) if A(x) < A(y) for any = = (x1,...,24) and y = (y1,...,yq) satisfying z; < y;
for any 4. Monotonicity is 2-local: an array A is monotone if and only if there is no pair

z,x+ e € [n]? so that A(x) > Az + €?).

Lipschitz continuity Another well-investigated property with connections to differential privacy
[16, 32, 44, 92], an [n]%-array A is c-Lipschitz continuous if |A(z) — A(y)| < czgzl lys — 4]
for any x,y € [n]%. This condition holds iff |A(z) — A(z +¢?)| < ¢ for any z,x + €' € [n]?, and

thus Lipschitz continuity is also 2-local.

Convexity Discrete convexity is an important geometric property with connections to optimiz-
ation and other areas [30, 31, 36, 51, 112, 114]. A one-dimensional array A is convex if
M(z) + (1 = NA(y) > AQQx + (1 — N)y) for any z,y € [n] and 0 < A\ < 1 satisfying
Az + (1 — Ay € [n]. Convexity is 3-local for the case d = 1: an array A : [n] — X is convex if
and only Afzr] — 2A[x 4+ 1] + A[z + 2] > 0 for any = € [n — 2|. In higher dimensions, several
different notions of discrete convexity have been used in the literature — see e.g. the introduct-
ory sections of the book of Murota on discrete convex analysis [105]. Two of the commonly
used definitions, M*-convexity and Lf-convexity, are 3-local and 4-local, respectively: see
Theorems 4.1 and 4.2 in [103], where it is shown that both notions can be defined locally
using slight variants of the Hessian matrix consisting of the partial discrete derivatives. An-
other common definition that is a natural variant of the continuous case states that convexity
is equivalent to the positive semi-definiteness of the Hessian matrix; under this definition,
convexity is 3-local. A strictly weaker notion of convexity, called separate converity [36], is
defined as follows: an [n]%-array A is separately convex if it is convex along each of the axes.

Similarly to one-dimensional convexity, separate convexity is 3-local for any d.

Properties of higher order derivatives More generally, any property of arrays that can be

characterized by “forbidden pointwise behavior” of the first k& discrete derivatives [36] is
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(k 4 1)-local. Monotonicity (for k = 1), Lipschitz continuity (k = 1) and convexity (k = 2)

are special cases of such properties.

Submodularity Another important property closely related to convexity [32, 34, 112, 127]. Given
v = (v1,...,24),y = (y1,---,yq) € [n]%, define z Ay = (min(z1,41),..., min(z4,y4)) and
rVy = (max(z1,y1),...,max(zq,yq)). An [n]%-array is submodular if Alz Ay] + Alx Vy] <
Alx] + A[y] for any z,y € [n]¢. Submodularity is 2-local: one can verify that submodularity
is equivalent to the condition that A(z) + A(x + €' + ¢) < A(z + €') + A(z + /) for all x.

Pattern matching and computer vision Tasks involving pattern matching under some limit-
ations — such as noise in the image, obstructed view, or rotation of elements in the image —
are at the core of computer vision and its applications. For example, the local property of
not containing a good enough f;-approximation of a given forbidden pattern is of practical
importance in computer vision. Sublinear approaches closely related to property testing are

known to be effective for problems of this type, see e.g. [99].

Computational biology Many problems in computational biology are closely related to one-
dimensional pattern matching. As an example, a defensive mechanism of the human body
against RNA-based viruses involves “cutting” a suspicious RNA fragment, if it finds one of a
(small) family of short forbidden consecutive patterns in it, indicating that this RNA might
belong to a virus. Thus, in order to generate fragments of RNA that are not destroyed by
such defensive mechanisms (which is a basic task in computational biology), understanding
the process of “repairing” a fragment so that it will not contain any of the forbidden patterns

is an interesting problem related to property testing.

6.1.1 Previous Results on Local Properties

One-dimensional arrays A seminal result of Ergiin et al. [63] shows that for constant e,
monotonicity is e-testable over the line (that is, for one-dimensional arrays) using O(logn) queries
over general alphabets. The non-adaptive one-sided error test proposed in [63] is based, roughly
speaking, on imitating a binary search non-adaptively. It was shown by Fischer [66] that the
above is tight even for two-sided error adaptive tests, proving a matching Q(logn) lower bound.
Later on, Parnas, Ron and Rubinfeld [112] and Jha and Raskhodnikova [92] showed that the
O(logn) upper bound on the non-adaptive one-sided query complexity also holds for convexity and
Lipschitz continuity, respectively. For general €, the upper bound in [92] is of the type O(s¢~!logn);
the same work also presents a matching lower bound of Q(logn) for the one-sided non-adaptive
case, while Q(logn) lower bounds for two-sided non-adaptive tests of convexity, and more generally,
monotonicity of the ¢-th derivative, are proved by Blais, Raskhodnikova and Yaroslavtsev [36] using
a communication complexity based approach [35]. Finally, a recent result of Belovs [18] refines the

one-sided non-adaptive query complexity of monotonicity to O(s~!logen).
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When the alphabet is binary (of size two), general positive results are known regarding the
testability of local properties in one dimension. It follows from the testability of regular languages,
established by Alon et al. [10], that any k-local property is testable in O(c(F)e™!(log®(e7!)))
queries, where ¢(F) depends only on the family F of forbidden consecutive length-k patterns

defining the property. However, ¢(F) can be exponential in k in general.

Multi-dimensional arrays Chakrabarty and Seshadhri [45] extended some of the above results
to hypergrids, showing that a general class of so-called “bounded derivative” properties (all of which
are 2-local), including monotonicity and Lipschitz continuity as special cases, are all testable over
[n]%-arrays with O(¢~'dlogn) queries. Another work by the same authors [46] shows a matching
lower bound of (¢~ !dlogen) for monotonicity, that holds even for two-sided adaptive tests, while
the communication complexity approach of [36] gives a (non-adaptive, two-sided) Q(dlogn) lower
bound for convexity, separate convexity and Lipschitz.

Submodularity is testable for d = 2 with O(log2 n) queries [112]; However, no non-trivial upper
bound on the query complexity is known for submodularity in the case d > 2 and convexity in the
case d > 1 under the Hamming distance and over general alphabets (although [30] proves constant-
query testability for 2D convexity over a binary alphabet). Under L;-distance and for any d, it was

shown in [32] that convexity in [n]%-arrays is testable with number of queries depending only on d.

6.1.2 Our Results

In this chapter, we present a generic approach to test all k-local properties of [n]d—arrays. Among
other consequences, a simple special case of our result in the one-dimensional regime shows that
the abundance of properties whose query complexity is ©(logn) is not a coincidence: in fact, any
O(1)-local property of one-dimensional arrays is testable with O(logn) queries, using a canonical
binary search like querying scheme. In the full version of the results presented here [21], we prove
matching lower bounds in d > 1 dimensions.

Our first main result is an upper bound on the number of queries required to test any k-local
property of [n]%-arrays non-adaptively with one-sided error. The test is canonical in a strong sense:
The queries it makes depend on n,d, k, and (relatively weakly) on &; they do not depend on P
or the alphabet Y. In other words, it makes the same type of queries for all k-local properties of
]d

[n]®-arrays over any finite (and not necessarily bounded-size) alphabet.

Theorem 6.1. Let 2 < k < n and d > 1 be integers, and let € > 0. Any k-local property P
of [n]%-arrays over any finite (and not necessarily bounded size) alphabet has a one-sided error

non-adaptive e-test whose number of queries is
o O(%-log <) ford=1.
o O(cdgl% -nd=1) for d > 1.
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Here, ¢ > 0 is an absolute constant. The test chooses which queries to make based only on the

values of n,d, k,e, and independently of the property P and the alphabet 3.

Note that we are interested here in the domain where n is large and d is considered a constant.
Thus, we did not try to optimize the ¢? term in the second bullet, seeing that it is negligible

compared to n?~! anyway.

Running time The main drawback of our approach is the running time of the test, which is
high in general. After making all of its queries, our test runs an inference step, where it tries to
evaluate (by enumerating over all relevant possibilities) whether a violation of the property must
occur in view of the queries made, and reject if this is the case.

Without applying any property-specific considerations, the running time of the inference step
is of order |E]O(”d). However, for various specific properties of interest, such as monotonicity and
1D-convexity, it is not hard to make the running time of the inference step of the same order of
magnitude as the query complexity. Moreover, in one dimension we can use dynamic programming
to achieve running time that is significantly better than the naive one, but still much higher than
the query complexity in general: O(|2|9®)n). This works for any k-local property in one dimension;

see the last part of Section 6.1.3 for more details.

Proximity oblivious test Interestingly, the behavior of the test depends quite minimally on
g, and it can be modified very slightly to create a proximity oblivious test (POT) for any k-local
property. The useful notion of a POT, originally defined by Goldreich and Ron [85], refers to a test
that does not receive ¢ as an input, and whose success probability for an input not satisfying the

property is a function of the Hamming distance of the input from the property.

Theorem 6.2. Fizd > 0. Any k-local property P of [n]%-arrays over any finite (but not necessarily
bounded size) alphabet has a one-sided error non-adaptive proximity oblivious test whose number
of queries is O(klog(n/k)) if d =1 and O(kn®"1) if d > 1. For any input A not satisfying P, the
rejection probability of A is linear (for fixed d) in the Hamming distance of A from P.

One can run O(cy/e) iterations of the POT to obtain a standard one-sided non-adaptive test.
The query complexity is O(ke™!log(n/k)) for d = 1 and O(cgke 'n?=1) for d > 1, where ¢4 > 0
depends only on d. Thus, the POT-based test is sometimes as good as the test of Theorem 6.1
(specifically, for d = 1 it matches the above bounds for almost the whole range of € and k). In any

case, the multiplicative overhead of the POT-based test is sublinear in 1/¢ across the whole range.

Type of queries In one dimension, many of the previously discussed properties, including, for
example, monotonicity and Lipschitz continuity, are testable in O(logn) queries (see Section 6.1.1
for a more extensive discussion). Previously known tests for monotonicity and Lipschitz continuity

make queries that resemble a binary search in some sense: these tests query pairs of entries of
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distance 2° for multiple choices of 0 < i < logn. Our test continues the line of works using
querying schemes roughly inspired by binary search. The test queries structures that can be viewed,
intuitively, as Loo-spheres of different sizes in [n]d. For this purpose, an Ly,-sphere with radius r
and width £ in [n]? is a set X1 x X9 X ... x Xy C [n]¢, where each X; is a union of intervals of the
form [a;,a;+1,...;a;+0—2,a; +L—1]U[b; —0+2,b; —L+3,...,b; —1,b;], and b; —a; € {r,r+1}
for any ¢ € [d]. More specifically, our test for k-local properties queries spheres with width & — 1
and radius of order 2° for different values of 7. In the simple special case where d = 1 and k = 2,

this is very similar to the querying scheme mentioned in the previous paragraph.

Implications In one dimension, the query complexity of the test matches the best known upper
bounds (and, in some regimes, refines the dependence on ¢) for several previously investigated
properties including monotonicity, Lipschitz continuity and convexity. For monotonicity of k-th
order derivatives, which is (k + 1)-local, it proves the first sublinear upper bound on the query

complexity: O(klogn); in comparison, the best known lower bound [36] is Q(logn).

For pattern matching type properties in 1D arrays (including applications in computational
biology and other areas), our approach gives a property- and alphabet-independent upper bound
of O(klogn) on the query complexity, with essentially optimal dependence on ¢ as well. Previously
known approaches for testing such properties, like the regular languages testing approach [10], yield
tests whose query complexity is dependent on the family of forbidden patterns considered, whose
size might be exponential in the locality parameter k. Our approach, on the other hand, requires
an O(logn) “overhead”, but its query complexity is independent of the size of the forbidden family

discussed. Instead, the dependence in k is linear.

In multiple dimensions, our approach is far from tight for well-understood properties such
as monotonicity and Lipschitz continuity, whose query complexity is known to be ©(dlogn) (in
comparison, our approach yields an O(nd_l) type bound). However, for testing of other properties

like convexity (for d > 1) and submodularity (for d > 2) in [n]?

-arrays, no non-trivial upper bounds
on the query complexity are known over general alphabets, so our upper bound of O(n?~1) is the
first such bound. While we do not believe this bound is tight in general, this might be a first step

towards the development of new tools for efficiently testing such properties.

Sketching for testing The fact that the queries made are completely independent of the property
suggests the following sketching technique allowing for “testing in retrospect”: Given € and k in
advance, we make all queries of the generic e-test for k-local properties in “real time”, and store
them for postprocessing. This is suitable, for example, in cases where we have limited access to a
large input for a limited amount of time (e.g. when reading the input requires specialized expensive
machinery), but the postprocessing time is not an issue. Note that for this approach we do not

need to know the property of interest in advance.
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6.1.3 Proof Ideas and Techniques

Here we present the main ideas of our proofs in an informal way. For simplicity, we stick to the

one-dimensional case, and assume that ¢ is fixed and k = o(n).

Upper bound for 1D Suppose that P = P(F) is a k-local property of [n]!-arrays A over an
alphabet X, defined by the forbidden family F. Let S be a consecutive subarray of A of length at
least 2k — 2. The boundary of S consists of the first k — 1 elements and the last £ — 1 elements
of S, and all other elements of S are its interior. We call S unrepairable if one cannot make the
array S satisfy the property P without changing the value of at least one element in its boundary.

Otherwise, S is repairable. Observe the following simple facts.

e [t suffices to only query the boundary elements of S in order to determine whether S is

unrepairable. Moreover, if S is unrepairable, then A does not satisfy P.

e If S is repairable, then we can delete all forbidden patterns from S by modifying only entries

in its interior, without creating any new copies of forbidden patterns in A.

We call the process of understanding whether S is unrepairable using only its boundary elements

inference. Note that the inference step does not make any additional queries.

A simple sublinear test A first attempt at a generic test for local properties is the following:
we query O(y/n) intervals in [n], each containing exactly k — 1 consecutive elements, including the
intervals {1,...,k — 1} and {n — k+ 2,...,n}, where the distance between each two neighboring
intervals is ©(y/n). A block is a subarray consisting of all elements in a pair of neighboring intervals
and all elements between them. The crucial observation is that at least one of the following must

be true, for any array A that is e-far from P (recall that ¢ is fixed).
e At least one of the blocks is unrepairable.
o At least Q(y/n) of the blocks do not satisfy P.

Indeed, if the first condition does not hold, then one can make A satisfy P by only changing
elements in the interiors of blocks that do not satisfy P. Seeing that A is e-far from P and that we
do not need to modify elements in the interiors of blocks that satisfy P, this implies that at least
Q(y/n) of the blocks do not satisfy P.

Now we are ready to present the test: We query all O(ky/n) elements of all intervals, and
additionally, all O(y/n) elements of O(1) blocks. Querying all elements of all intervals suffices to
determine (with probability 1) whether one of the blocks is unrepairable. If A is e-far from P
and does not contain unrepairable blocks, querying O(1) full blocks will catch at least one block
not satisfying P with constant probability, as desired. For more details, see Section 6.3 and the

preliminary Section 6.2 that prepares the required infrastructure.
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The optimal test Improving the query complexity requires us to construct a system of grids
— which are merely subsets of [n] — inspired by the behavior of binary search. In comparison, the
approach of the previous test is essentially to work with a single grid. The first (and coarsest) grid
contains only the first £ — 1 elements and the last £ — 1 elements of [n]. In other words, it is equal
to{l,...,k—1,n—k+2,...,n}. The second grid refines the first grid — that is, it contains all
elements of the first grid — and additionally, it contains k — 1 consecutive elements whose center is
n/2 (whenever needed, rounding can be done rather arbitrarily). We continue with the construction
of grids recursively: To construct grid number ¢ + 1, we take grid number ¢ and add k£ — 1 elements
in the middle of each block of grid i (blocks are defined as before). Note that the length of blocks
is roughly halved with each iteration. We stop the recursive construction when the length of all of
the blocks becomes no bigger than ck, where ¢ > 2 is an absolute constant.

For each block B in grid number ¢ > 1, we define its parent, denoted Par(B), as the unique
block in interval ¢ — 1 containing it. A block B in the system of grid is mazimally unrepairable if
it is unrepairable, and all blocks (of all grids in the system) strictly containing it are repairable. It
is not hard to see that different maximally unrepairable blocks have disjoint interiors.

The main observation now is that in order to make A satisfy P, it suffices to only modify entries
in the interiors of parents of maximally unrepairable blocks. If A is e-far from P, then the total
length of these parents must therefore be Q(n) (for constant £). However, since the length of Par(B)
is roughly twice the length of B, we conclude that the total length of all maximally unrepairable
blocks is €2(n). With this in hand, it can be verified that the following test has constant success
probability. For each grid in the system, we pick one block of the grid uniformly at random, and
query all entries of its boundary. Additionally, for the finest grid (whose block length is O(k)), we
also query all interior elements of the picked block.

For more details, see Section 6.4 (which builds on the infrastructure of Section 6.2).

Running time in 1D We now show that the running time of the inference step for a block
of length m is m\E]O(k). Summing over all block lengths, this would imply that the total running
time of the test is n|E|O(k). The proof uses dynamic programming. Let S be an array of length m
over ¥, and assume that S(1),5(2),...,S(k—1) and S(m — k+2),...,S(m) are all known. For
each “level” from 1 to m — k+ 1, we keep a Boolean predicate for each of the ]Z|k possible patterns

of length k over X. These predicates are calculated as follows.

e In the first level, the predicate of o = (01, ...,0%) evaluates to TRUE if S(1) = 01,...,S5(k —
1) = op_1, and additionally, o ¢ F, that is, o is not a forbidden pattern. Otherwise, the
predicate of o is set to FALSE.

e For i =2 tom — k+ 1, the predicate of o = (01, ...,0%) in level ¢ evaluates to TRUE if and
only if 0 ¢ F and there exists o’ = (0,01, ...,0k_1) that evaluates to TRUE in level ¢ — 1.
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e Finally, the predicates in level m — k + 1 are modified as follows: for all o = (01,...,0%) so
that o; # S(m — k + j) for some j > 2, we set the predicate of o to FALSE.

It is not hard to see that S is unrepairable if and only if all predicates at level m — k+1 are FALSE.

The running time is O(m|%|°?) for a suitable constant ¢ > 0.

Generalization to higher dimensions The generalization to higher dimensions is relatively
straightforward; the main difference is that the boundary of blocks now is much larger: blocks of
size m x ... x m have boundary of size O(kdm?='). Thus, essentially the same proof as above (with
suitable adaptations of the definitions) yields a test with query complexity O(kdn?~') for constant
€. For the running time, we can no longer use dynamic programming; using the naive approach
of enumerating over all possible interior elements of a block, we get that the inference time for a

block of size m x ... x m is |E\O(md), making the total running time of the test |Z]O(”d).

6.1.4 Other Related Work

Hyperfiniteness A graph is hyperfinite if, roughly speaking, it can be decomposed into constant
size connected components by deleting only a small constant fraction of the edges. Newman and
Sohler [110] investigated the problem of testing in hyperfinite graphs, showing that any property
of hyperfinite bounded degree graphs is testable with a constant number of queries. While the
graph with which we (implicitly) work — the hypergrid graph, whose vertices are in [n]? and two
vertices are neighbors if they differ by 1 in one coordinate — is a hyperfinite bounded degree graph
(for constant d), the results of [110] are incomparable to ours. Indeed, in our case the vertices are
inherently ordered, and it does not make sense to allow adding edges between vertices that are
not neighbors (as entries of [n]?), unlike the case in [110], where one may add or remove edges
arbitrarily between any two vertices. Still, the hyperfiniteness of our graph seems to serve as a

major reason that local properties have sublinear tests.

Block tests for image properties The works of Berman, Murzabulatov and Raskhodnikova
[29, 30] and the results in the next chapter, on testing of image properties (that is, on visual
properties of 2D arrays), show that tests based on querying large consecutive blocks are useful
for image property testing. Here, the general queries we make are quite different: we query the
boundaries of blocks of different sizes, so the queries are spherical, in the sense that a block can
be seen as a ball in the L.-metric on vectors in [n]?, while its boundary can be be seen as the
(width-k) sphere surrounding this ball. This introduces a new type of queries shown to be useful

for image property testing.
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6.1.5 Discussion and Open Questions

Small alphabets The results here are alphabet independent, and in particular, they work for
alphabets over any size. An intriguing direction of research is to understand whether one can
obtain more efficient general testability results for local properties of multi-dimensional arrays over
smaller alphabets; this line of research has been conducted for specific properties of interest, like
monotonicity and convexity [18, 111]. Note that the one-sided non-adaptive lower bound we prove
here can be adapted to yield a |E\Q(1) lower bound for testing local properties over alphabets ¥ of
size smaller than n?. The most interesting special case is that of constant-sized (and in particular,
binary) alphabets. Here, no lower bounds that depend on n are known. For the case d = 1, it is
known that all O(1)-local properties are constant query testable; this follows from a result of Alon et
al. [10], who showed that any regular language is constant-query testable. However, it is not known
whether an analogous statement holds in higher dimensions. That is, for any d > 1, the question
whether all k-local properties of [n]%-arrays over {0,1} are e-testable with query complexity that
depends only on d, k, and ¢, first raised in [26] (see also [4]), remains an intriguing open question.
We believe that positive results in this front might also shed light on the question of obtaining more

efficient inference for large classes of properties, especially over small alphabets.

Does adaptivity help? This work does not provide any lower bounds for adaptive tests, and it
will be interesting to do so; previously investigated properties likes monotonicity yield an Q(dlogn)
lower bound [36, 46], and we believe that “data flow” type properties, somewhat similar to our lower
bound constructions, can provide instances of 2-local properties that require at least n¢ queries, for
some constant ¢ < 1, for the adaptive two-sided case.

However, it is not clear whether better lower bounds (even bounds of the type Q(n!*¢)) exist.
It will be very interesting to prove better upper and lower bounds for testing local properties. Our
conjecture is that any 2-local property is testable in n't°Mg(d) queries (where g(d) depends only
on d), but proving a statement of this type might be very difficult.

Using the unrepairability framework in other contexts We show that the concept of un-
repairability allows to unify and reprove many property testing results on one-dimensional arrays.
What about multi-dimensional arrays? for example, can one generalize the currently known proofs
for “bounded derivative” properties (including monotonicity and Lipschitz continuity) in d dimen-

sions to a larger class of local properties?

Inference As mentioned in Section 6.1.3, our test queries boundaries of block-like structures,
and later infers whether each block is unrepairable (recall the definition from Section 6.1.3). The
inference takes place without making any additional queries, and is based only on the property P,
the alphabet X, and the values of A in the boundary of the block.
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The running time of the inference step is very large in general (although, as we have seen, in
the 1D case it can be significantly improved using dynamic programming). The naive way to run
the inference is by enumerating over all possible ways to fill the interior of the block, and checking
whether each such possibility is indeed F-free. The running time of this method is of order \E|O(”d)
in general for d > 1, and is exponential in n even if |¥| = 2.

However, for many natural properties, inference can be done much more efficiently. For example,
in monotonicity testing, the inference amounts to checking that no pair of boundary entries violates
the monotonicity. Thus, we believe that understanding inference better — including tasks such as
characterizing properties in which inference can be done efficiently, and understanding the inference

time of specific properties of interest — would be an interesting direction for future research.

Organization Section 6.2 is devoted to the infrastructure needed for the proof, Section 6.3
presents a simple but non-optimal test, and finally, Section 6.4 presents the optimal test and
proves Theorems 6.1 and 6.2. Matching lower bounds are proved in the full paper describing the
results in this chapter [21].

6.2 The Grid Structure

In this section we present the grid-like structure in [n]? that we utilize for our tests.

Definition 6.3 (Interval partition). A subset I C [n] is an interval if its elements are consecutive,
that is, if I = {x,z+1,...,x+y} for some x € [n] andy > 0. For any £ > 0, we denote the set of
the smallest £ elements of I by I[: {] and also define I[{ + 1: ] =1\ I[: {]. In the degenerate case
that |I| < £, we define I[: {] to be equal to I.

For 1 < w < n, an (n,w)-interval partition is a partition of [n] into a collection of disjoint
intervals T = (I, ..., I) where the number of elements in each interval I; is either w or w+1, and

for any i < j, all elements of I; are smaller than those in I;.

Lemma 6.4. For any positive integer n and 0 < i < logn, there exists an (n, |n/2])-interval

partition I; containing exactly 2° intervals, so that the family {I}}fgw satisfies the following. For

any i > j and interval I € Z;, there exists an interval I' € T; satisfying I C I'.
Proof. For any i define n; = |n/2!|; observe that ng = n and n;y1 = |n;/2] for any i. We prove
the lemma by induction on 4, starting by defining Zy = ([n]). Given Z; = (I{,...,I%) in which all
intervals are of length n; or n; + 1, we define Z;11 as follows. Each I; € 7;, is decomposed into two

i+t +1

. i+1 i1 | il i
intervals 157", Iy where |17 [ |15 | € {nit1,ni41 + 1}, and all elements of 157

than all elements of I;;rl; observe that such a decomposition is indeed always possible. Now define

, are smaller

Liv1 = (Ii“, e ,I;f-;ll). Clearly, the intervals of Z; 11 satisfy the last condition of the lemma. [

In particular, we conclude that for any positive integer w and any n > w there exists an integer

w/2 < w' < w for which an (n,w’)-interval partition exists.
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Definition 6.5 ((n,d, k, w)-grid). Let 2 < w < n be integers for which an (n,w)-interval partition
Z = (L,...,I) exists. For integers 2 < k < w and d > 1, the (d-dimensional) (n,d,k,w)-grid
induced by T is the set

t
G={(x1,...,2q) € [n]? | Fie[d] suchthatz:iEUIj[:k:—l]
j=1

We denote the family of all (n,d, k,w)-grids by G(n,d, k,w). As we have seen in Lemma 6.4, the
family G(n,d, k,w) is non-empty for any w = |n/2'] satisfying w > k.

Definition 6.6 (G-block, Boundary, Closure). Two tuples x = (x1,...,24) and y = (y1,...,Yd)
in [n]¢ are considered neighbors if Zle |z; —yil = 1. Given a grid G € G(n,d, k,w), consider the
neighborhood graph of non-grid entries, i.e., the graph whose set of vertices is V. = [n]4\ G and two
entries are connected if they are neighbors. A G-block B is a connected component of this graph,

and the closure of B is

B = {(ZL‘l,...,ZL‘d) e [n]? | I(w1,...,yq) € B such that Vi € [d] |x; — yi| < k:}

Note that B C B. Define the boundary of the block B as 0B = B\ B.

The above notions can naturally be defined with Cartesian products. Recall that the Cartesian
product of sets X1, ..., X4, denoted H?:1 Xj or Xi X ...x Xj, is the set of all tuples (x1,...,2zq)
with z; € X for any j € [d]. Let G € G(n,d, k, w) be the grid induced by the interval partition
Z = (I,...,I;). It is not difficult to verify that any G-block B can be defined as a Cartesian
product B = H?:1 I;;[k: ] for some intervals I;,, ..., I;; € T (not necessarily different).

B and 0B can also be defined accordingly, as we detail next. For k as above, define I; =
L; ULiq[: k—1] for any 1 < i < t, where we take ;11 = ) for consistency. Also define 9I; =
L\ Llk:]=L[: k= 1)ULy [: k— 1]. With these in hand, we have

d d
B:HIij[k::]; EzHE; aB:UEx...xﬁxﬁ_ﬁijix...xf (6.1)
j=1

ij41
=1

Recall that |I;,| € {w,w+ 1} for any j, implying that |I; [k :]| <w+2—k and |I;;| < w+ k. Also
note that ‘8[1'].‘ < 2(k —1). Thus,

1Bl < (w+2—k)%; 1Bl < (w+k)*; 0B| < 2d(k —1) - (w+ k), (6.2)

where the inequality on |0B| holds since each set in the union expression in (6.1) is of size at most

(2k — 2)(w + k)41, The following observation is a direct consequence of (6.1).
Observation 6.7. Let G € G(n,d, k,w). The boundary of any G-block is contained in G.
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Lemma 6.8. For any G € G(n,d, k,w), any width-k subarray of an [n|*-array intersects exactly

one G-block B. Moreover, the subarray is contained in B.

Proof. Let T = (I1,...,I;) be the interval partition inducing G. Suppose that the subarray S is
in location (a1, ...,aq) where a; € I;; for some iy,...,i4 not necessarily distinct. In other words,
the set of entries in S is H;lzl S; where S; = {aj,a; +1,...,a; + k — 1} for any j € [d]. We argue
that S is contained in B, where B = I;;[k: ] x ... x I;;[k: |: The fact that a; € I;, implies that
aj+1,...,a5+k—1¢€L;; Ul 41[: k—1]. It follows from (6.1) that S C B. From Observation
6.7 we conclude that S does not intersect any block other than B, and it remains to show that S
intersects B. Indeed, for any 1 < j < d, the fact that a; € I;; implies that one of the elements
aj,...,a; +k —1 must be contained in I;; [k:]. Denoting this element by b;, we conclude that
(b1,...,bj) € SNB. O

6.3 Testing with Grid Queries

In this section we prove the following upper bound for all k-local properties; its proof serves as a

warm-up towards proving the main upper bound of Theorem 6.1.

Theorem 6.9. Any k-local property of [n]*-arrays over any alphabet is e-testable with one-sided

] d—d d__ 1 . .
error using no more than 2(d + 1)n®” &1 ka+1c™ &1 non-adaptive queries.

1d = o(n).

The upper bound of Theorem 6.9 is sublinear in the size of the array as long as k/e
The rest of the section is dedicated to the proof of the theorem. We may assume that k& < ¢!/ dn /4,
as otherwise the expression in the statement of the theorem is larger than n¢ and the proof follows

trivially by querying all [n]? entries of the given input array. Under this assumption, it holds that
9% < pd/(@+1) 1/ (d+1) 21/(d+1).

Definition 6.10 (Unrepairable block). Let A be an [n]%-array over ¥, and let G € G(n,d, k,w).
A G-block B is (P, A)-unrepairable (or simply unrepairable, if P and A are clear from context) if
any [n]%-array A" over ¥ that satisfies A'(x) = A(x) for any x € OB, including the case A’ = A,
contains an F-copy in B. Otherwise, the block B is said to be (P, A)-repairable.

Note that the (un)repairability of a block B is determined solely by the values of A on 0B,
and that an unrepairable block always contains an F-copy. These two facts inspire the following

lemma, which serves as the conceptual core behind the test of Theorem 6.9.

Lemma 6.11. Suppose that A is an [n]%-array that is e-far from satisfying a k-local property P(F),
and let G € G(n,d, k,w) where w > k. Then at least one of the following holds.

o There exists a (P, A)-unrepairable G-block.

o For at least an e-fraction of the G-blocks B, there is an F-copy in B.
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Proof. Suppose that the first condition does not hold, that is, all G-blocks are (P, A)-repairable.
By Lemma 6.8, every F-copy is contained in the closure of some G-block.

Let C denote the collection of all G-blocks B such that A contains an F-copy in B. By the
repairability, the values of A in each block B € C can be modified so that after the modification, A
will not contain an F-copy in B. We stress that the modifications for each block B appear only in
B itself and do not modify entries on the grid, so by Lemma 6.8, they cannot create new F-copies
in the closure of other blocks.

After applying all of the above modifications to A, we get an F-free array, i.e., an array that
satisfies P. A was initially e-far from P, and the number of entries in each block is bounded by
(w+2 — k)¢ < w?, implying that at least an e-fraction of the blocks belong to C. O

Proof of Theorem 6.9. We may assume that k%/e < n?/2, otherwise our test may trivially query
all n entries of A. Our (non-adaptive) test T' picks W = |n®/ (D g1/ (d+D)1/(d+1) | > 9k and an
integer w satisfying k < W/2 < w < W, for which an (n,w)-interval partition exists. 7' now makes

the following queries.

1. T queries all entries of an arbitrarily chosen grld G e g (n,d, k,w). The number of entries in
any grid is at most dnd(k — 1)/w < 2dn®~ T kAT a

2. T chooses a collection B of 2/ G-blocks uniformly at random and queries all entries in these
blocks. Since each block contains at most (w 4 2 — k)? < W entries, the total number of
queries is bounded by 2W9 /e < Qnd_#‘llkﬁjﬂa_ﬁ. Note that the boundaries of all blocks
are queried in the first step (since they are contained in the grid). Thus, for any block B € B,

the test queries all entries of B.

The total number of queries in the above two steps is 2(d + 1)nd_#‘llkﬁa_#.

After querying all entries of the grid (and in particular, the whole boundaries of all of the
blocks), T' can determine for every G-block B whether it is (P, A)-unrepairable or not. T rejects
if at least one of the blocks is unrepairable or if it found an F-copy in B for some B € B, and
accepts otherwise. The test has one-sided error, since an unrepairable block must contain an JF-
copy. In view of Lemma 6.11, T rejects arrays A that are e-far from P with probability at least
2/3: If A satisfies the first condition of Lemma 6.11, then T" always rejects. If the second condition
holds, the probability that none of the 2/ closures B for B € B contains an F-copy is bounded by
(1 —¢)¥¢ < €72, so T rejects with probability at least 1 —e~2 > 2/3. O

6.4 Systems of Grids and Testing with Spherical Queries

In this section we prove Theorems 6.1 and 6.2. We do so by considering a system of grids with

varying block sizes, defined as follows.
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Definition 6.12. Let d > 0 and 2 < k < w < n be integers. An (n,d, k,w)-system of grids is an
(r+ 1)-tuple (Go, G1,...,Gy) of grids, for r(n,w) = [log(n/w)]|, so that

e G;€G(n,d, k,|n/27t]) for any 0 <i <r.

e Gy D G1D...DG, (as subsets of [n]®). In particular, for any i < j < r, any G;-block B is
contained in a Gj-block B', and we say that B' is an ancestor of B. Specifically, the Gii1-
block containing B is called the parent of B and denoted by Par(B). For the only G,-block,
B,., we define Par(B,.) as the whole domain [n]?.

r(n,w) was chosen so that w < n/2" < 2w, making Go a G(n,d, k,w’)-grid for w < w' < 2w.
As we shall see, when working with such a system, unrepairability of blocks can be handled in a
query-efficient way. The following lemma asserts that such a system of grids exists for any suitable

choice of parameters.
Lemma 6.13. An (n,d, k, w)-system of grids exists for alld >0 and 2 < k <w < n.

Proof. Consider the family of interval partitions Zo, ..., Z 145, obtained by Lemma 6.4. For each
0 < i < r(n,w) define G; as the (n,d, k, |[n/2"7"|)-grid induced by Z,_;. It is not hard to verify
that (Gy,...,G,) satisfies all requirements of an (n, d, k, w)-system of grids. O

For the rest of the section, fix a k-local property P(F) of [n]¢-arrays over 3, and an [n]%-array A
over Y. Consider an (n,d, k,w)-system of grids (Gy,...,G,) constructed as described in the proof
of Lemma 6.13, where w will be determined later. (For now it suffices to require, as usual, that

2 <k <w <n.) Wesay that a G;-block B is a (P, A)-witness if one of the following holds.
e i = 0 and the array A contains an F-copy in the closure B.
e i >0 and B is (P, A)-unrepairable.

Recall that the closure of unrepairable blocks cannot be F-free, so the closure of any witness block
contains an F-copy. We say that a witness block B is mazimal if all of its ancestors are not

witnesses, that is, they are repairable.
Observation 6.14. Any (P, A)-witness is contained in a mazimal (P, A)-witness.

We define the mazimal witness family VW as the set of all maximal (P, A)-witness blocks.

Obviously, the blocks in W might come from different G;’s
Observation 6.15. B; N By = ) for any two blocks B1, By € W.
Lemma 6.16. All F-copies in A are fully contained in |Jpey B.

Proof. Let F be an F-copy in A. By Lemma 6.8, F' is contained in the closure of a unique Gy-block
Bp; hence, Bp is a (P, A)-witness. From Observation 6.14 we have Bp C B’ for some maximal
(P, A)-witness B’. We conclude that FF € Bp C B’. O
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Lemma 6.17. One can make A satisfy P by only modifying entries of A in Jpeyy Par(B).

Proof. Fix B € W. B is a maximal (P, A)-witness, so Par(B) is repairable.! Thus, One can
make Par(B) F-free by only modifying entries inside Par(B). By Lemma 6.8, width-k subarrays
that are not fully contained in Par(B) are left unchanged. Therefore, this modification does not
create any new JF-copies in A. Seeing that all F-copies in A are originally contained in |Jg¢, B C
Ugew m, applying these modifications for all B € W deletes all F-copies in A without creating

new ones, so in the end of the process A satisfies P. O

/4,10, as otherwise the expression in the theorem is Q(n?). We

We may assume that k < ¢
choose w = 2k, working with an (n, d, k, 2k)-system of grids from now on. A very useful consequence

of this choice of w is that here the parent of a block B cannot be much larger than B itself.

Lemma 6.18. Let (Go,G1,...,G;) be an (n,d, k,2k)-system of grids. Then for any 0 <i <r and
any Gi-block B it holds that |Par(B)|/|B| < 3%.

Proof. For i = r this is trivial. Now fix ¢ < r and let B be a G;-block. Recall that, following (6.1),
one can write B = H;l:1 I;;[k: ] where each interval I;; (for j € [d]) is of size at least 2k > 4. On

the other hand, we can also write Par(B) = H;l:l I, [k: ] where I/, D I;; for any j € [d]. It is not
J J ’

hard to verify that |I/,| < 2|I;;| + 1 most hold, and so
J

d || —(k=1) 4 o 141 (k-1 ok d
|ParB|:H|j - 1)§H\Zj\+ (k )§<2 2k I<:+2> < g

Bl - Bk % k1

where the second inequality holds since |I;;| > 2k for any j. O
The next corollary follows immediately from Lemmas 6.17 and 6.18.

Corollary 6.19. Suppose that A is e-far from P. Then the total number of entries in the blocks
of W is at least e(n/3).

We are now ready for the proof of the main upper bound of this chapter, Theorem 6.1.

Proof of Theorem 6.1

1/dp, /10. For larger k, the expression in the theorem dominates

As before, we may assume that £ < ¢
n? and thus becomes trivial. Consider the (n, d, k, 2k)-system of grids (Go, G1, ..., G,) mentioned
above. For any 0 < i < r, define §; = |B; N W|/|B;|, where B; is the set of all G;-blocks. In other
words, 9; is the fraction of maximal witnesses among the G;-blocks. By Corollary 6.19, if A is e-far
from P then Y°7_, &; > ¢/3%. Define v’ = |log(c'/%n/k)| > 1, noting that G,» € G(n, d, k, w,+) with

wy > 2k - 27 > '/, Thus, the total number of blocks in B, is bounded by (n/w,)?* < 1/e.

'Note that when B = B, is the maximal witness considered, Par(B) is [n]%; the latter is repairable for any
non-empty property.
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The test We iterate the following basic step 2 - 3¢/ times.
1. Pick B € By uniformly at random and query all entries of B.
2. For any 1 < i <7/, pick B € B; uniformly at random and query all entries of | J Beo, OB-

Finally, the test rejects if and only if at least one of the blocks B picked during the process is
a (P, A)-witness. (Recall that querying all boundary entries of a G;-block for i > 0 suffices to
determine whether it is unrepairable, and thus a witness.) The test is clearly non-adaptive, and
has one-sided error: It only rejects if it finds a witness. As we have seen earlier, all witnesses contain
an F-copy. The test is canonical in the following sense. The choice of queries in every basic step
depends only on n,d, k, and (weakly) on e, and is independent of the property P or the alphabet
Y. To determine which entries constitute a block, it suffices to know the parameters of the block,
that depend only on n, d, k; the dependence in ¢ is only taken into account in the choice of r’. The

test only considers P in order to determine whether each queried block is a witness.

Analysis Suppose that A is e-far from P. If §; > 0 for some ¢ > r’ then it must hold that d,» > 0
as well (since any unrepairable G;-block most contain an unrepairable G-block for any ¢/ < i). By
the choice of 7', we must have §,» > 1/|B,/| > ¢ in this case. If the above doesn’t hold, then 4; =0
for any ¢ > r/, implying that Z::ol 8; > /3% Therefore, in both cases, we have Zflzo 5 >¢e/34

The probability that a random B;-block is a witness is at least §;, and therefore the probability
that a single basic step leads to a rejection of A is at least Z;lzo §; > ¢/3%. Running 2 - 39/¢
independent iterations of the basic step ensures that the test will accept A with probability at most
(1-— E/‘3>d)2'3d/6 < e 2 < 2/3, as desired.

Query complexity For d = 1, the query complexity of each basic step is O(kr’): The test queries
B for a single block B € By, and the boundaries of 7’ larger blocks. Considering the parameters
of our system of grids, we have |B| < 4k and so |B| < 6k. On the other hand, the boundary of
each of the larger blocks is of size at most 2k — 2. Therefore, the total query complexity for the
1D test is O(kr'/e) = O (X log (en/k)) as desired. For d > 1, consider a single basic step, and for
any 0 < i < 7' let B; € B; be the G;-block picked in this step. From (6.2) we have |By| < (6k)4,
while for any i > 0 we have |0B;| < 2d(k — 1)(4k - 2° + k)41 = O(d - (4k)? - 2(4=1%), Note that the
last expression grows exponentially with (d — 1)7, so the total number of queries in a single basic
step is O((6k)% 4 d - (4k)?2(4=D") . Plugging in 7/, we have 217" = %ndil. As the test runs
O(3d /€) iterations of the basic step, we conclude that the total query complexity is bounded by

ke~ dpd=1 for an absolute constant ¢ > 0, completing the proof of Theorem 6.1.

Proximity oblivious test The proof of Theorem 6.2 follows by a very simple modification of the
proof of Theorem 6.1. The desired proximity oblivious test (POT) is the so called “basic step” from

the above test, with r replacing ' (since r’ depends on ¢). The POT rejects if it infers that one of
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the blocks queried is a witness, like the above test. Its query complexity is O(kr) = O(klogn/k) for
d = 1. In the case d > 1, the query complexity is dominated by the size of 0B,, which is bounded
by O(dkn=1).

Clearly this POT has one-sided error, and its queries do not depend on the property P and
the alphabet ¥ (on the other hand, they do depend on n,d, k). Using the notation of the previous
subsection and denoting by €4 the Hamming distance of a given input A from P, we get (exactly
as in earlier parts of the proof) a rejection probability of at least > ;_,d; > e/ 3% for A, which is

linear in €4 for fixed d. This concludes the proof.
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Chapter 7

Testing Meets Pattern Matching: The

Modification Lemma

The results in this chapter appear in [26].

7.1 Introduction

Pattern matching is the algorithmic problem of finding occurrences of a fixed pattern in a given
string. This problem appears in many settings and has applications in diverse domains such as
computational biology, computer vision, natural language processing and web search. There has
been extensive research concerned with developing algorithms that search for patterns in strings,
resulting with a wide range of efficient algorithms [38, 58, 78, 98, 100]. Higher-dimensional analogues
where one searches for a d-dimensional pattern in a d-dimensional array have received attention as
well. For example, the 2D case arises in analyzing aerial photographs [14, 15] and the 3D case has
applications in medical imaging. Given a string S of length n and a pattern P of length k < n,
any algorithm which determines whether P occurs in S has running time Q(n) [54, 117] and a
linear lower bound carries over to higher dimensions. For the 2D and 3D case, when an n X n
image is concerned, algorithms whose run time is O(n?) are known [15]. These algorithms have
been generalized to the 3D case to yield running time of O(n?) [77]. Finally it is also known (e.g.,
[94]) that for the d-dimensional case it is possible to solve the pattern matching problem in time
O(d?n%logm) (where the pattern is an array of size m?). It is natural to ask which tasks of this
type can be performed in sublinear (namely o(n?)) time for d-dimensional arrays.

Here, we are interested in deciding quickly whether a given d-dimensional array A is far from
not containing a fixed d-dimensional pattern P. This is a special case of the setting discussed
in the previous chapter, concerning local properties, where the forbidden family associated with
the property contains a single forbidden pattern. For simplicity of presentation, all results in this

chapter will be presented for cubic arrays in which k1 = - - - = kg, but they generalize to non-cubic
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arrays in a straightforward manner. We consider the (tolerant) pattern-freeness problem where
one needs to distinguish between the case that a given d-dimensional array A is €1-close to being
P-free for a fixed pattern P, and the case that A is eo-far from being P-free, where €1 < £9. An
(e1,€2)-test @ for this problem is a randomized algorithm that is given access to an array A, as
well as its size and proximity parameters 0 < e; < g9 < 1. @ needs to distinguish with probability
at least 2/3 between the case that A is is e;-close to being P-free and the case that A is eo-far from
being P-free. The query complexity of () is the number of queries it makes in A.

Our interest in the pattern-freeness problem stems from several applications. In certain scenarios
of interest, we might be interested in identifying quickly that an array is far from not containing
a given pattern. For the one dimensional case, being far from not containing a given text may
indicate a potential anomaly which requires attention (e.g., an offensive word in social network
media), hence such testing algorithms may provide useful in anomaly detection. Many computer
vision methods for classifying images are feature based: hence being far from containing a certain
pattern associated with a feature may be useful in rejection methods that enable to quickly discard
images that do not possess a certain visual property.

Beyond practical applications, devising property testing algorithms for the pattern freeness
problem is of theoretical interest. In the first place, it leads to a combinatorial characterization of
the distance from being P-free. Such a characterization has proved fruitful in graph property testing
[7, 10] where celebrated graph removal lemmas were developed en route of devising algorithms for
testing subgraph freeness. We encounter a similar phenomena in studying patterns and arrays: at
the core of our approach for testing pattern freeness lies a modification lemma for patterns which
we state next. We believe that this Lemma may be of independent interest and find applications
beyond testing algorithms. Later we show one such application: computing the exact distance of a
(one dimensional) string from being P-free can be done in linear time.

For a pattern P of size k x k X ... X k, any of its entries that is in {0,k — 1} x ... x {0,k — 1}
is said to be a corner of P. We say that P is almost homogeneous if all of its entries but one are
equal, and the different entry lies in a corner of P. Finally, P is removable (with respect to the
alphabet T') if for any d-dimensional array A over I' and any copy of P in A, one can destroy the
copy by modifying one of its entries without creating new P-copies in A. The modification lemma
states that for any d, and any large enough pattern P, when the alphabet is binary it holds that
P is removable if and only if it is not almost homogeneous, and when the alphabet is not binary,
P is removable provided that it is large enough.

Recent works [29, 30] have obtained tolerant tests for visual properties. As observed in [29, 30],
tolerance is an attractive property for testing visual properties as real-world images are often noisy.
With the modification lemma at hand, we show that when P is removable, the (relative) hitting
number of P in A, which is the minimal size of a set of entries that intersects all P-copies in A
divided by |A|, differs from the distance of A from P-freeness by a multiplicative factor that depends

only on d (and not on P or A). This relation allows us to devise very fast (5%, ¢)-tolerant tests for
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P-freeness, as the hitting number of P in A can be well approximated using only a very small sample
of blocks of entries from A. The query complexity of our test is O(Cy/e), where Cy is a positive
constant depending only on the dimension d of the array. Note that our characterization in terms
of the hitting number is crucial: merely building on the fact that A contains many occurrences of P
(as can be derived directly from the modification lemma) and randomly sampling O(1/¢) possible
locations in A, checking whether the sub-array starting at these locations equals P would lead to
query complexity of O(k%/e). Note that our test is optimal (up to a multiplicative factor that
depends on d), as any test for this problem makes (1/¢) queries.

The one dimensional setting, where one seeks to determine quickly whether a string S is e-far
from being P-free is of particular interest. We are able to leverage the modification Lemma and
show that the distance of a string S from being P-free for a fixed pattern P (that is not almost
homogeneous) is exactly equal to the hitting number of P in A. For an arbitrary constant 0 < ¢ < 1,
this characterization allows us to devise a ((1 — c)e, €)-tolerant test making O.(¢~!) queries for this
case. For the case of almost homogeneous patterns, and an arbitrary constant ¢ > 0 , we devise a
((1/16 4 c)e, e)-tolerant test that makes O.(1/e) queries. Whether tolerant tests exist for almost
homogeneous patterns of dimension larger than 1 is an open question.

Moreover, the characterization via the hitting number implies an O(n + k) algorithm that
calculates (exactly) the distance of A from being P-free where P is an arbitrary pattern (that may
be almost homogeneous). We are not aware of a previous algorithm for the distance computation
problem. Unlike the one-dimensional case, in d dimensions we do not know of a clean combinatorial
description of the distance to being P-free for higher dimension. Furthermore, it can be shown via
a direct reduction from covering problems in the plane [72], that for dimension d > 1 there exists

patterns P for which calculating the distance to P-freeness is NP-hard.

Related Work The problem of testing pattern freeness is related to the study of testing subgraph-
freeness (see e.g. [3, 7] and Chapter 2). This line of work examines how one can test quickly whether
a given graph G is H-free or e-far from being H-free, where H is a fixed subgraph. In this problem,
a graph is e-far from being H-free if at least an e-fraction of its edges and non-edges need to be
altered in order to ensure that the resulting graph does not contain H as a (not necessarily induced)
subgraph. A key component in these works are removal lemmas: typically such lemmas imply that
if G is e-far from being H-free, it necessarily contains a “large” number of copies of H. Perhaps
the best example for this phenomena is the triangle removal lemma which asserts that for every

€ (0,1), there exists 6 = d(¢) > 0 such that if an n-vertex graph G is e-far from being triangle
free, then G contains at least dn? triangles (see e.g., [13] and the reference within).

Alon et al. showed [10] that regular languages over {0, 1} are strongly testable. Testing pattern-
freeness (1-dimensional, binary alphabet, constant pattern length k) is a special case of the former,
since the language of all strings avoiding a fixed pattern is regular. The query complexity of their
test is O (g - ln3(%)), where ¢ is a constant that depends on the minimal size of a DFA Aj, that
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accepts the regular language L. It is shown in [10] that ¢ can be taken to be O(s3) where s is the
size of Ar. In the case of the regular language considered here a simple pumping-lemma inspired
argument shows that s > Q(k). Hence the upper bound on testing pattern freeness implied by their
algorithm is O (g . 1113(%)). Our 1D test solves a very restricted case of the problem the test of
[10] deals with, but it achieves a better query complexity of O(1/¢) in this setting. Moreover, our
test is much simpler and can be applied in the more general high dimensional setting, or when the
pattern length k is allowed to grow as a function of the string length n.

The problem of testing submatriz freeness was investigated in [6, 8, 68, 69, 71]. As opposed to
our case, which is concerned with tight submatrices, all of these results deal with submatrices that
are not necessarily tight (i.e. the rows and the columns need not be consecutive). Quantitatively,
the submatrix case is very different from our case: in our case P-freeness can be testable using
O(e71) queries, while in the submatrix case, for a binary submatrix of size k x k a lower bound of
e~k on the needed number of queries is easy to obtain, and in the non-binary case there exist
2 x 2 matrices for which there exists a super polynomial lower bound of (g 1/¢),

The 2D part of the results presented here adds to a growing literature concerned with testing
properties of images [29, 115, 121]. Ideas and techniques from the property testing literature have

recently been used in the fields of computer vision and pattern recognition [96, 99].

Notation and definitions We let [[n]] denote the set {0,...,n — 1}. Here, for convenience,
we view a d-dimensional (cubic) array A over an alphabet I' is a function from [[k]]? to T. The
x = (x1,...,2q) entry of A, denoted by A, is the value of the function A at location z. Let P
be a (k,d)-array over an alphabet I' of size at least two. We say that a d-dimensional array A
contains a copy of P (or a P-copy) starting in location x = (z1,...,z4) if for any y € [[k]]¢ we have
Azyy = Py. Finally, A is P-free if it does not contain copies of P.

The absolute and relative distance to P-freeness will be denoted by dp(A) and dp(A), respect-
ively. Here, dp(A) is the minimum absolute number of entry modifications required to make A free
from P-copies, and dp(A) = dp(A)/|A|.

For an array A and a pattern P we will call a set of entries in A whose modification can turn it
to be P-free a deletion set and therefore it is natural to call dp(A) (the absolute distance of A to
P-freeness) the deletion number, since it is the size of a minimal deletion set. In a similar manner,
for a given set of entries in A, if every P-copy in A contains at least one of these entries, we call
it a hitting set and we call the size of a minimal hitting set the hitting number, denoted by hp(A).
For all notations here and above, in the 1-dimensional case we will replace A by S (for String).

We recall several definitions regarding tolerant testability and distance estimation [113]. Let P
be a property of arrays and let hi, he : [0,1] — [0,1] be two monotone increasing functions. An
(h1, he)-distance approzimation algorithm for P is given query access to an unknown array A. The
algorithm outputs an estimate 6 to dp(A), such that with probability at least 2/3 it holds that
hi(0p(A)) < 5 < he(0p(A)). Finally, for a property P and for 0 < &1 < g9 < 1, an (&1, e2)-tolerant
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test for P is given query access to an array A. The test accepts with probability at least 2/3 if A
is e1-close to P, and rejects with probability at least 2/3 if A is eo-far from P. Finally, we define

the additive (multiplicative) tolerance of the test above as g9 — €1 (e2/e1 respectively).

Main Results The modification lemma result is central in the study of minimal deletion sets.
It classifies the possible patterns into ones that are removable and ones that are not. The result
that the vast majority of patterns are removable is used extensively throughout the chapter in
the design and proofs of algorithms for efficient testing of pattern freeness (in one and higher
dimensions) as well as for the exact computation of the deletion number in one-dimension. Our
1D modification lemma (Lemma 7.10) gives the following full characterization of one-dimensional
patterns (i.e. strings). A binary pattern is removable if and only if it not almost homogeneous,
while any pattern over a larger alphabet is removable. The multidimensional version of the lemma
(Lemma 7.10) makes the exact same classification, but for (k,d)-arrays for which k > 3-29. The
fact that most patterns are removable is very important for analyzing the deletion number (which is
the distance to pattern freeness). As an example, a simple observation is that a removable pattern
appears at least dp(A) times (possibly with overlaps) in the array A, which implies an e-test that
can simply check for the presence of the pattern in 1/e random locations in the array at a sample
complexity of O(k/e).

Another important part of our results here makes explicit connections between the deletion
number and the hitting number for both one and higher dimensions. These are needed in order to
get improved tests (e.g. for getting rid of £ in the sample complexity) in d-dimensions as well as
for linear time computation of the distance (deletion number) in 1-dimension. For the 1D case we
show that the deletion number dp(S) equals the hitting number hp(S), which leads to an exact
computation of dp(S) in time O(n + k) (Theorem 7.19) as well as a tolerant tests for Pattern
Freeness: An (g1, ez)-tolerant test for any 0 < g7 < g9 < 1 at a complexity of O(¢3/(e2 — £1)3)
(Theorem 7.20) as well as an ((1 — 7)e,e)-tolerant test for a fixed 7 > 0 and any 0 < ¢ < 1 at
a complexity of O(e~1773) (Corollary 7.21). For higher dimensions, we show (Lemma 7.15) that
hp(A) < dp(A) < aghp(A) < agk™@, a bound that relates the hitting number hp(A) and the
deletion number dp(A) through a constant oy = 4¢ + 2% that depends only on the dimension d.
This bound enables a ((1— T)dogls, g)-tolerant test making Cre~! queries, where C, = O(1/74(1 —
(1 —7)4?2) (Theorem 7.23).

Our main results are summarized in Table 7.1. Additional results regarding almost homogeneous

patterns are given in the full version [26].

7.2 Modification Lemma

Theorem 7.1 (Modification Lemma). Let d > 1 and let P be a (k,d)-array over the alphabet T’
where k > 3 - 24,
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. deletion number . . test query
dim. | template type . modification lemma .
computation tolerance complexity
D general O(n+k) removable for any k 1/(1—7) O(1/er?)
almost homog. O(n+ k) not removable for any k (16 +¢) acfe
oD general NP-Hard removable for k > 3-2¢ (1 —7)"%qy Bar/€
almost homog. — not removable for any k — —

Table 7.1: Summary of results. 0 < 7 < 1 and ¢ > 0 are arbitrary constants. «. is a constant
that depends only on c. 34 ; is a constant that depends only on d and 7. 'modification lemma’

specifies if patterns are classified as removable or not. the 'test tolerance’ is multiplicative.

1. If |T'| = 2 then P is removable if and only if it is not almost homogeneous.
2. If [T'| > 3 then P is removable.

Remark 7.2. Theorem 7.1 states that any large enough binary pattern which is not almost homo-
geneous is removable. The requirement that the pattern is large enough is crucial, as the 2 x ... x 2
pattern P satisfying P, = 0 for any x = (x1,...,24) with 1 = 0 and P, = 1 otherwise is not
removable even though it is not almost homogeneous. To see this, consider the following 4 X ... x 4
array A: M, = 0 if either x1 = 0, or x1 = 1 and x; € {1,2} for any 2 < i < d, or 1 = 2 and
x; € {0,3} for some 2 <i < d. For any other value of x, M, = 1. Note that A contains a copy of
P starting at (1,...,1), but flipping any bit in this copy creates a new P-copy in A. Still, the size
of the counterexample is only 2 x ... x 2 while in the statement of Theorem 7.1, the dependence is
exponential in d. It will be interesting to understand what is the correct order of magnitude of the

dependence of k on d.

Proof of Theorem 7.1. The second statement of the theorem can be easily derived from the first
statement; If P does not contain all letters in I" then it is clearly removable, as changing any of
its entries to any of the missing letters cannot create new P-copies. Otherwise, we can reduce
the problem to the binary case: let 01,09 be the letters in I" that appear the smallest number of
times in P. Consider the following (k, d)-array P’ over {0,1}: P, =0if P, € {01,092} and P, =1
otherwise. Observe that P’ is not almost homogeneous, implying that it is removable. It is not
hard to verify now that P is removable as well.

In what follows, we will prove the first statement. If P is binary and almost homogeneous then it
is not removable: Without loss of generality P o) = 1 and P, = 0 for any x # (0,...,0). Consider
a (2k, d)-array A such that A o) = A1) = 1 and A = 0 elsewhere. Clearly, modifying any bit
of the P-copy starting at (1,...,1) creates a new copy of P in A, so P is not removable.

The rest of the proof is dedicated to the other direction. Suppose that P is a binary (k, d)-array
that is not removable. We would like to show that P must be almost homogeneous. As P is not
removable, there exists a binary array A containing a copy of P that such that flipping any single

bit in this copy creates a new copy of P in A. This copy of P will be called the template of P in A.
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Figure 7.1: lllustration for Lemma 7.4. A 2-dimensional example, where i is the vertical
coordinate: Flipping the bit (of the template P) at location a creates the P-copy Q° at
location m(a). Similarly, the copy Q° is created at location m(b). Note that the pair of
points (Z,y) (which is (z,y) in P) and the copy locations pair (m(a), m(b)) are both (i, A;)-
related. The values P, and P, (Mz and My) must be equal.

Clearly, all of the new copies created by flipping bits in the template must intersect the template,
so we may assume that A is of size (3k — 2)? and that the template starts in location k = (k —
1,...,k=1).

For convenience, let I = [[k]]? denote the set of indices of P. For any z € [ let Z =z + k; T is
the location in A of bit x of the template.

Roughly speaking, our general strategy for the proof would be show that there exist at most
two ”"special” entries in P such that when we flip a bit in the template, creating a new copy of P
in A, the flipped bit usually plays the role of one of the special entries in the new copy. We will
then show that in fact, there must be exactly one special entry, which must lie in a corner of P,
and that all non-special entries are equal while the special entry is equal to their negation. This

will finish the proof that P is almost homogeneous.

Definition 7.3. Let i < d and let § be positive integers. Let x = (z1,...,24) and y = (y1,...,Yd)
be d-dimensional points. The pair (x,y) is (i,6)-related if y; — x; = 6 and y; = x; for any j # i.
An (i,6)-related pair (z,y) is said to be an (i,6)-jump in P if Py # P,.

Lemma 7.4. For any 1 < i < d there exists 0 < A; < k/3 such that at most two of the (i, A;)-
related pairs of points from I are (i, A)-jumps in P.

Proof. Recall that, by our assumption, flipping any of the K = k¢ bits of the template creates a
new copy of P in A. Consider the following mapping m : I — [[2k — 1]]%. m(z1,...,zq) is the
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starting location of a new copy of P created in A as a result of flipping bit x = (z1,...,z4) of the
template (which is bit Z of A). If more than one copy is created by this flip, then we choose the
starting location of one of the copies arbitrarily.

Observe that m is injective, and let S be the image of m, where |S| = K. Let 1 < i < d and

consider the collection of (one-dimensional) lines
Li={{z}x...x{zi} x[2k = 1] x {zip1} x ... x {xg} | Vj#i:z;€[2k—1]]}.

Clearly > scp. [S N €| = K. On the other hand, [£;| =[], (2k —1) < 2d-1 [Tk = 29-1K [k, so
there exists a line £ € £; for which [SN¢| > k/2971 > 6. Hence |SN¢ > 7. Let oy < ... < a7
be the smallest i-indices of elements in S N £. Since a7 — a1 < 2k — 1 there exists some 1 <[ < 6
such that a;41 —ay < k/3. That is, S contains an (i, A;)-related pair with 0 < A; < k/3. In other
words, there are two points a,b € I such that flipping @ (b) would create a new P-copy, denoted
by Q% (Q° respectively), which starts in location m(a) (m(b) respectively) in A, and (m(a), m(b))

is an (i, A;)-related pair. The following useful claim completes the proof of the lemma.

Claim 7.5. For a and b as above, let (x,y) be a pair of points from I that are (i, A;)-related and
suppose that y # a —m(a) and that x # b —m(b). Then P, = P,.

Proof. The bits that were flipped in A to create @ and Q° are a, b respectively. Since y+m(a) # a,
the copy @, contains the original entry of A in location y + m(a). Therefore, P, = M, ) (as

M,

But since both pairs (z,y) and (m(a), m(b)) are (i, A;)-related, we get that m(b) — m(a) =y — =z,

+m(a) 18 bit y of Q¢, which is a copy of P). Similarly, since z +m(b) # b, we have P, = My g

implying that x + m(b) = y + m(a), and therefore P, = M, ,) = My pm(q) = Py, as desired. [

Clearly, the number of (i, A;)-related pairs that do not satisfy the conditions of the claim is at

most two, finishing the proof of Lemma 7.4. O

Let A = (Ay,...,Ay) where for any 1 < i < d, we take A; that satisfies the statement of

Lemma 7.4 (its specific value will be determined later).
Definition 7.6. Let x € I. The set of A-neighbors of = is
Ny={yel | 3Fi:(z,y)is (i, A;)-related or (y,x) is (i, A;)-related}

and the number of A-neighbors of x is ny = |N,|, where d < n, < 2d. We say that x is a A-corner
if ny(A) = d and that it is A-internal if n,(A) = 2d. Furthermore, x is (A, P)-isolated if P, # P,
for any y € Ny, while it is (A, P)-generic if P, = P, for any y € N,.

When using the above notation, we will sometimes omit the parameters (e.g. simply writing
isolated instead of (A, P)-isolated) as the context is usually clear. The definition imposes a sym-
metric neighborhood relation, that is, z € N, holds if and only if y € N,. If x € IV, we say that

x and y are A-neighbors. Note that a point z = (x1,...,24) € I is a A-corner if z; < A; or
x; >k —A; for any 1 < i <d, and that x is A-internal if A; < xz; <k — A,; for any 1 <i <d.
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Claim 7.7. Two (A, P)-isolated points in I cannot be A-neighbors.

Proof. Suppose towards contradiction that z = (x1,...,24) and y = (y1,...,¥yq) are two distinct
(A, P)-isolated points and that (x,y) is (i, A;)-related for some 1 < i < d. Since A; < k/3, at least
one of x or y participates in two different (i, A;)-related pairs: if z; < k/3 then y;+A; = 2;4+2A; < k
S0 ¥ is in two such pairs, and otherwise x; > A;, meaning that x participates in two such pairs.
Assume without loss of generality that the two (i, A;)-related pairs are (¢, z) and (z,y), then P, # P,
and P, # P, as z is isolated. By Lemma 7.4, these are the only (i, A;)-jumps in P.

Choose an arbitrary j # i and take v = (vy,...,vq) where v; = A; and v; = 0 for any [ # j.
Recall that A; < k/3, implying that either x; +v; < k or z; —v; > 0. Without loss of generality
assume the former, and let ' = x +v and v/ = y + v. Since z and y are (A, P)-isolated, and since
' € N, and 3 € N, we get that P,y # P, # Py, # Py, and thus P, # P, (as the alphabet is

binary). Therefore, (2/,y’) is also an (i, A;)-jump in P, a contradiction. O

.,
.
LY

Illustration for Definition 7.8. Re- m(a) P
call that flipping a bit @ in A creates a k
new P-copy Q* (which contains a), loc- 0. \

ated at the point m(a) in the coordin- / O f(a)
Qa P a/'D \
p- O

ates of A. The bits x and a are mapped

.
"
.

to y and f(a) respectively.

Definition 7.8. For three points x,y,a € I, we say that x is mapped to y as a result of the flipping
of a if T = m(a) +y. Moreover, define the function f : I — I as follows: f(x) =z —m(x) is the

location to which x is mapped as a result of flipping x.

In other words, x is mapped to y as a result of flipping the bit a if bit  of A ”plays the role”
of bit y in the new P-copy @, that is created by flipping a. Note that

o If Z — m(a) ¢ I then x is not mapped to any point. However, this cannot hold when z = a,

so the function f is well defined.

e For a fixed a, the mapping as a result of flipping a is linear: if x and y are mapped to 2’ and
y' respectively, then y—x = 3/ —2/. In particular, if (z,y) is (i, A;)-related for some 1 < i <d
then (2/,y) is also (i, A;)-related.

e If x is mapped to y as a result of flipping a and x # a, then P, = P,.
e On the other hand, we always have P, # Py ().
o If z is A-internal and (A, P)-generic, then f(x) must be (A, P)-isolated.
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The first four statements are easy to verify. To verify the last one, suppose that x is internal
and generic and let z € Ny(,); we will show that Pr,) # P,. Since z is internal, there exists
y € N, such that y — x = z — f(z). Then y is mapped to z as a result of flipping x, since
g=y+k=z+@+k)— f(x) =247 — f(x) = 2+ m(z). Therefore P, = P,. On the other hand,
P, = P, as x is generic and P, # Py(,), and we conclude that P, # Py (.

Lemma 7.9. There is exactly one (A, P)-isolated point in I.

Proof. Let S be the set of isolated points; our goal is to show that |S| = 1. Consider the set
C={(z,y):x,y € I,(z,y) is an (i, A;)-jump for some 1 < i < d}.

Clearly, each point in S is contained in at least d pairs from C. By claim 7.7 no pair of isolated
points are A-neighbors and therefore every pair in C contains at most one point from S. By Lemma
7.4, |C] < 2d which implies that |S| < 2. On the other hand we have |S| > 1. To see this, observe
that the number of (A, P)-internal points in I is greater than Hle k/3 > 2% while the number of
non-A-generic points is at most 2|C| < 4d, implying that at least 29° _ 44 > 0 of the internal points
are generic. Therefore, pick an internal generic point z € I. As we have seen before, f(z) must be
isolated. To complete the proof it remains to rule out the possibility that |S| = 2. If two different
(A, P)-isolated points a = (a1, ...,aq) and b = (by,...,by) exist, each of them must participate in
exactly d pairs in C'. This implies that both of them are A-corners with d neighbors. It follows
that every A-internal point z must be generic (since an internal point and a corner point cannot
be neighbors), implying that either f(z) = a or f(z) =b.

Let 1 < i < d and define §; > 0 to be the smallest integer such that there exists an (i, d;)-
related pair (x,y) of generic internal points with f(z) = f(y). For this choice of z and y we have
m(y) —m(z) =y— fly) — (z— f(z)) =9 —Z =y —x, so (m(x),m(y)) is also (i,d;)-related. In
particular, we may take A; = J; (Recall that until now, we only used the fact that A; < k/3, without
committing to a specific value). Without loss of generality we may assume that f(z) = f(y) = a.
By Claim 7.5, any pair (s,t) of (i, A;)-related points for which s # y — m(y) = f(y) = a and
t #x —m(z) = f(z) = a is not an (i, A;)-jump. Since b is not a A-neighbor of a, it does not

participate in any (i, A;)-jump, contradicting the fact that it is (A, P)-isolated. O
Finally, we are ready to show that P is almost homogeneous. Let a = (ay,...,aq) be the single
(A, P)-isolated point in I. Consider the set
J={z=(21,...,24q) el A <z <A;+ 2% for any 1 <i<d}
and note that all points in J are A-internal. Let 1 < i < d and partition J into (i, 1)-related pairs of
points. There are 9d°-1 > 4d pairs in the partition. On the other hand, the number of non-generic

points in J is at most 2|C| — (d — 1) < 4d (to see it, count the number of elements in pairs from C

and recall that a is contained in at least d pairs). Therefore, there exists a pair (x,y) in the above
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partition such that = and y are both generic. As before, f(x) and f(y) must be isolated, and thus
f(z) = f(y) = a, implying that A; = §; = 1. We conclude that A = (1,...,1).

Claim 7.5 now implies that any pair (s,t) of (i,1)-related points for which s # § — m(y) =
fly) =aand t # T —m(x) = f(x) = a is not an (i,1)-jump. That is, for any two neighboring
points s,t # a in I, Py = P;, implying that P, = P, for any z,y # a (since A = (1,...,1), a
A-neighbor is a neighbor in the usual sense). To see this, observe that for any two points =,y # a
there exists a path xox1...2; in I where x; and xj41 are neighbors for any 0 < j < ¢ — 1, the
endpoints are g = x and z; = y, and x; # a for any 0 < j < t. Since a is isolated, it is also true
that P, # P, for any x # a. To finish the proof that P is almost homogeneous, it remains to show
that a is a corner. Suppose to the contrary that 0 < a; < k — 1 for some 1 < i < d and let b,c € [
be the unique points such that (a,b) and (c,a) are (i, 1)-related, respectively. Clearly f(b) = a,
so a is mapped to @ — m(b) = a— b+ f(b) = ¢ —a +a = c as a result of flipping b, which is a
contradiction - as P, # P, and b # a,c. This finishes the proof. O

The above proof only works when the dimension is bigger than one, though it can be adapted
to the one-dimensional case. However, we present here another proof for the one-dimensional case,
which is simpler than the general proof above and works for any pattern which is not almost
homogeneous (as opposed to the proof above, that required the forbidden pattern to also be large
enough). The main strategy here is to consider the longest streaks of zeros and ones in the pattern

- a strategy that cannot be used in higher dimensions.

Theorem 7.10 (1D Modification Lemma). A one-dimensional pattern is removable if and only if

it 1s almost homogeneous.

Proof of Theorem 7.10. The reduction from a general alphabet to a binary one and the negative
example for almost homogeneous patterns which were presented in the proof of Theorem 7.1 also
hold here. It remains to prove that any 1-dimensional binary pattern that is not almost homogen-
eous is removable. Let P = Fy...P,_1 be a binary pattern of length k, that is contained in an
arbitrary binary string S. We need to show that one can flip one of the bits of P without creating a
new P-copy in S. We assume that P contains both Os and 1s (i.e. it is not homogeneous) otherwise
flipping any bit would work. Therefore we can assume from now that k& > 3 (since for & = 1,2 all
patterns are homogeneous or almost homogeneous).

Let us assume also that P starts with a 1, i.e. Py =1 and let t < k — 1 be the length of the
longest 0-streak (sub-string of consecutive 0s) in P. Let ¢ > 0 be the leftmost index in which such
a 0-streak of length t begins. Clearly, ,_1 =1and P, =...= P41 =0.

If i+t < k (i.e. the streak is not at the end of P) then P;;; = 1 and in such a case if we modify
P14 to 0, the copy of P is removed without creating new P-copies in S. To see this, observe that
a new copy cannot start at the bit flip location ¢ + ¢ or within the O-streak at any of its locations
i,...,7+t — 1 since the bits in these locations are 0 while the starting bit of P is 1. On the other
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hand, a new copy cannot start after ¢ + ¢ since it must include the bit flip location or anywhere
before P; since otherwise it would contain a O-streak of length ¢ + 1.

This implies that P contains exactly one 0-streak of length ¢ at its last ¢ locations. In particular,
we have that at the last location Px_; = 1, and if we denote by r the length of the longest 1-streak
in P, a symmetric reasoning shows that P begins with its only longest 1-streak of length r.

If P is not of the form 1%0%, it can be verified that flipping Ps (the leftmost 0 in P) to 1
does not create any P-copy. The only case left is P = 1°0, where s,t > 2 since P is not almost
homogeneous. Consider the bit of the string S that is to the left of P. If it is a 0 then we flip P;

to 0 and otherwise, we flip Py to 0, where in both cases no new copy is created. O

7.3 Characterizations of the Deletion Number

We use the modification lemmas of Section 7.2 to investigate several combinatorial characterizations
of the deletion number, which will in turn allow exact (and efficient) computations of the deletion
number in the 1-dimensional case, as well as efficient approximation and testing of pattern freeness
for removable patterns in the d-dimensional case for any d. In particular, we prove some surprising
connections between minimal deletion sets and minimal hitting sets. The characterizations for
almost homogeneous 1-dimensional patterns are given in the full version [26], along with an optimal
algorithm to compute the exact deletion number and an optimal test for pattern freeness in that
case. The rest of this section deals with removable patterns, for both the 1-dimensional and multi-
dimensional settings. In the 1-dimensional case, we show that for any removable pattern there
exist certain minimal hitting sets which are in fact minimal deletion sets. These are sets where
none of the flips create new occurrences. Our constructive proof shows how to build such a set and
allows for a linear time algorithm for finding the deletion number. The result is summarized in

Theorem 7.11 and proved next.

Theorem 7.11 (dp(S) equals hp(S); Linear time computation of dp(S)). For a binary string S
of length n and a binary pattern P of length k that is removable, the deletion number dp(S) equals
hp(S) and can be computed in time O(n + k) and space O(k).

Proof. The main challenge is in proving that dp(S) = hp(S), since then all we need is an algorithm
that computes hp(S), which is relatively standard in template matching: Find the set O of all
P-copies in S; Go though the P-copies in O from left to right, repeating the following: (i) Let
P* be the leftmost P-copy in O; (ii) Increment the hitting set count by 1; (iii) Remove from O
all the (following) P-copies that intersect P* (those whose starting location is not to the right of
the rightmost location in P*);. Clearly, the complexity of the algorithm is dominated by the first
step of finding O, which can be done in O(n + k) using, e.g., the KMP algorithm [98]. Taking the
rightmost location in each of the visited P*s creates a hitting set, which is minimal, due to the fact
that the set of P*s is independent.
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It is trivial that dp(S) > hp(S) and hence we have to show that dp(S) < hp(S). Refer to
Algorithm 1 below that constructs a set of bit flip locations. Note that the choice in Step 3 is
possible using the modification lemma, while the choice in Step 4 is possible, since if h is contained
in only one P-copy P? € D, by definition of D there is some P! € D such that P° and P! intersect
at some location x (in particular one of the 2 endpoints of P° must be in the intersection). Simply
replace h by x. It is easy to verify that the set of locations F that it computes is a (particular)
minimal hitting set of O, and hence |F| = hp(S). It is therefore sufficient to show that flipping the
bit locations in F turns the string S to be P-free. This will be guaranteed, using the fact that F
is a hitting set of O, by Lemma 7.12 that shows that no bit flip of a location in F creates a new

P-copy. Therefore, the proof of Lemma 7.12 will complete the proof of Theorem 7.11.

Algorithm 1
Input: Binary string S of length n and removable binary string P of length k

Output: Minimal set F of flip locations in S that make it P-free (|F| = dp(S))

1. Find the set O of all P-copies in S

2. Divide O into Z U D, where Z is the subset of P-copies that do not intersect any other
P-copy in O, while D is the subset of P-copies that intersect some other P-copy in O.

3. For each P-copy P* € 7 add to F a bit location whose flipping removes P* without creating
any other P-copy

4. Find a minimal hitting set H of D such that every location h € H is contained in at least

two P-copies in D.

5. Add H to F

return F

Lemma 7.12 (Flipping bits in F' does not create new P-copies). Let f € F. Flipping the bit at

location f does not create any new P-copy in S.

Proof. Recall that F consisted of bits in Z as well as bits in D. Each of the bit flips that are in 7
was chosen (step 3 of Algorithm 1) using the modification lemma to be such that no new P-copy is
created. The main challenge is in showing that the remaining bit flips, i.e. at locations H, do not
create any new P-copies. Notice our requirement that any location h € H is contained in at least

two P-copies. By symmetry considerations, we have the following:

Observation 7.13. [Flipping an arbitrary bit in the intersection of 2 P-copies can create a new

P-copy] <= [Flipping an arbitrary bit in a P-copy can create 2 new P-copies]

By Observation 7.13, in order to show that bit flips in  do not create new P-copies, one can
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prove that an arbitrary bit-flip in a P-copy cannot create more than 1 P-copy. Applying Lemma
7.14 below thus completes the proof. ]

Lemma 7.14 (Any bit flip in a pattern P cannot create more than 1 new P-copy). Let x € [[k]].
Flipping the bit P, can create at most 1 new P-copy in S.

Proof. The proof goes by contradiction, assuming that a bit flip in P has created two new P-copies

P! and P?, and will analyze separately the two possible cases:

Case 1: ‘P! and P? intersect P from different sides’

In this case, flipping the bit location = of P creates a P-copy P! shifted ¢; locations to the left
and a P-copy P? shifted t, locations to the right, where we assume w.l.o.g. that ¢; < t5. One can
verify that P,_y, = P2_, # P, (and similarly that P, # P}, = Py4,). We assume that P, =0

and hence P,_;, = 1. See Figure 7.2 and its caption for the intuition of the proof.

1 o 1 P
111
x—t, x+

Figure 7.2: lllustration for Case 1: Our proof is based on 'skipping’ along a 'path’ from
location x to location x — t9 in P, while each skip is done between entries with equal values.
A complete path from = to x — ¢t will give a contradiction, since P,_;, # P,. The path
starts at x and makes skips of size ¢; to the left as long as it does not pass x — ts, then it

makes a single skip to the right of size ¢5. It repeats this traversal until reaching z — 5.

Since the P-copy P! was created from P at a left offset of ¢; by the flipping at location z, we
can infer that P, = Py, for any y € [[k —t1]] , y # « (or informally that ” P is ¢1-cyclic except at
x from the right” ). Similarly, we know that ” P is te-cyclic except at x from the left”.

We define a 'path’ of skips that starts from location x, makes skips of size ¢; to the left as long
as it does not pass x — to, then it makes a single skip to the right of size to. Call this short path a
traversal. The path repeats this traversal until reaching x — t9. It is easy to verify that the path
is always within the open range (z — t9, z + t1) (except for the last step that reaches x — t3). This
implies in particular that the path does not go from x + t; to = or from z to x — t2 (i.e. through
the two only ”value switching skips”), and hence the value of P along the path must be 0.

It remains to prove that the path eventually reaches x —to and does not continue in some infinite

loop. For each location y that the path goes through we can look at the value y (mod t1). Assume
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w.l.o.g. that for the 'target’ location x — ty we have that x — t3 = 0 (mod ¢1). This implies for the
'starting’ location z that z = t3 (mod ¢1) = 0. Now, each skip by ¢; does not change the location
(mod t1), while a skip by t5 to the right increases the value by ¢ (mod ¢1). In other words, the
sub-sequence of locations at the beginning of each traversal (before the first left skip) is of the form
C-ty (mod t1), for £ = 1,2,3,.... This is exactly the subgroup of Z;, (the additive group of integers
modulo 1) generated by the element ¢ and hence must contain the identity element 0 (mod ).

This proves that the location = — to will be reached.

Case 2: ‘P! and P? intersect P from one (the same) side’

Flipping a location x in a P-copy P creates two new P-copies P’ (i = 1,2) that intersect P from
the same side, w.l.o.g. right, at a shift of ¢;, where ¢; < ta. Refer to Figure 7.3 and its caption for
the intuition of the proof. We ’follow’ the two disjoint ’arrow paths’ shown in the figure that lead

from z in P to 2’ := x — t5 in P! to reach a contradiction. Formally:

_ pl _ p2 _ _ pl
Pa? - Paﬁ - Px—t2+t1 — Lao—to+t1 — Px—tg
2 _ _ 1
Pl' # Pz‘—tQ — faz—t2 — Px—tz
as desired. ]
[$)
< - - p?

. x, / 4 / ’,,/
4.-1.; / - P},/'
i
/s
%
.%/ / 2
p

Figure 7.3: lllustration for Case 2: All arrows (ignoring directions) except the red one

represent equality, while the red arrow represents inequality. The two disjoint 'arrow paths’
from x in P to 2’ in P! imply that both P, = P,» and P, # P,/, leading to contradiction.

The proof of the theorem now immediately follows from Lemma 7.12. O

For the multidimensional case, we start by showing that when P is removable, the hitting
number hp(A) of A approximates the deletion number up to a multiplicative constant that depends
only on the dimension d. This is done in two stages, the first of which involves the analysis of a
procedure that proves the existence of a large collection of P-copies with small pairwise overlaps,
among the large set of at least dp(A) P-copies that exist in A. This procedure heavily relies on
the fact that P is removable. The second stage shows the existence of a large hitting set of the

collection with small pairwise overlaps. The result is summarized in Lemma 7.15.
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Lemma 7.15 (relation between distance and hitting number). Let P be a removable (k,d)-array
over an alphabet T, and let A be an (n,d)-array over I'. Let g = 4% 4 24 Tt holds that: hp(A) <
dp(A) < aghp(A) < ad(n/k‘)d.

Proof. The first inequality follows from the fact that one needs to modify at least one entry in
any P-copy in A. For the third inequality, note that the set {(z1,...,zq) € [[k]]? : V1 < i <
d, x; =k — 1(mod k)} is a set of size [[n/k]]? that hits all & x ... x k consecutive subarrays of A,
and in particular all P-copies. It remains to prove that dp(A4) < aghp(A). We may assume that
the alphabet I' is binary by applying the standard reduction from non-binary to binary alphabets
presented in Section 7.2. We present a procedure on the array A that makes it P-free by sequentially
flipping bits in it. In what follows, we will say that the center of a (k,d) matrix lies in location
(Lk/2],...,|k/2]) in the matrix. Let P be the set of all P-copies before A is modified. In Phase
1, the procedure ”destroys” all P-copies in P by flipping central bits of a subset of the original P-
copies in A, which is chosen in a greedy manner. However, these bit flips might create new P-copies
in M, which are removed in Phase 2 using the modification lemma. The procedure maintains sets

A, B that contain the bits flipped in Phases 1,2 respectively.
e Let P be the set of all P-copies in A, N <+ ¢ A<+ ¢, B+ ¢.
e Phase 1: While P # ¢

— Pick @ € P arbitrarily.

Flip A, where z is the center of Q.

— Add @ to A and remove all P-copies containing x from P.

Add all P-copies created by flipping A, to N.
e Phase 2: While N # ¢

— Pick Q € N arbitrarily.

— Pick a location z in @ whose flipping does not create new P-copies in A (exists by

modification lemma).

— Flip the bit A, and add z to B.

For the analysis of the procedure, we say that two P-copies @), Q) in A whose starting points are
v = (21,..,24),y = (Y1,---,vyq) € [[n]]? respectively are 1/2-independent if |z; — y;| > k/2 for
some 1 < i < d. Note that 1/2-independence is a symmetric relation. A set of P-copies is 1/2-
independent if all pairs of copies in it are 1/2-independent. Denote by ip(A) the maximal size of
a 1/2-independent set in A, divided by n?,

For @ and @)’ as above, if Q" does not contain the center of ) then @, Q" are 1/2-independent, as
there is some 1 < i < d for which either y; < x;+ |k/2| —(k—1) < x; —k/2+1or y; > x;+ | k/2] >
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x; + k/2 — 1. In both cases |y; — ;| > k/2, implying the 1/2-independence. Therefore the set 4
generated by the procedure is 1/2-independent: if Q, Q" € A are two different P-copies and @ was
added to A before @', then @’ does not contain the center of @’, so @ and @’ are 1/2-independent.

Using the following claims, it is not hard finish the proof of the lemma.
Claim 7.16. ip(A) < 2%hp(A).

The proof of Claim 7.16 will be given later. For what follows, we say that P has a cycle of size
t = (t1,...,tq) € Z%, if P, = P, for every pair of locations z = (1, ...,z4),y = (y1,. .., ja) € [[k]]¢
such that z; = y; (mod [t;]) Vi € [d]. The following claim is straightforward to verify.

Claim 7.17. [Shifted occurrences imply a cyclic pattern] If M contains two overlapping occurrences
of A, at a relative offset of t € Z¢, then P has a cycle of size t.

Claim 7.18. [Central bit flip creates few new occurrences| Flipping the central bit of a P-occurrence

in A creates at most 2% new occurrences of P in A.

We first show how to use these claims to finish the proof. Consider the sets A, B after the
procedure ends. The procedure flips |A| +|B| bits in A, so |A|+|B| > dp(A)n?. On the other hand,
|A| < ip(A)n? < (2n)?hp(A) as A is 1/2-independent. Claim 7.18 now implies that |B| < 2¢|A|,
and we get that

nldp(A) < |A] + |B] < (27 + D] A| < agn®hp(A)

Dividing by n? yields the desired inequality. We now prove the claims.

Proof of Claim 7.16. Let S be a 1/2-independent set of P-copies in A, which is of size ip(A). We
will show that no point in [[n]]¢ is contained in more than 2¢ copies from S, implying that to hit
all copies of P in A (and in particular, all copies of P in S) we will need at least |S|/2¢ = ip(A)/2¢
entries. Suppose to the contrary that there are 2% 4+ 1 copies from S that contain the point
= (x1,...,14) € [[n]]%. we will say that a copy from S containing z is i-lower if k/2 < z; —y; < k
and ¢-higher if 0 < z; — y; < k/2 (note that 0 < z; — y; < k must hold). Therefore, there exist
two copies @, Q" € S containing x, starting at (yi,...,yq4) and (y],...,y}) respectively, such that
for any 1 < i < d, @ is i-higher (i-lower) if and only if Q' is i-higher (i-lower respectively). But
then, for any 4, either 0 < y;,y} < k/2 or k/2 < y;,y} < k, implying that |y; — y}| < k/2, thus
contradicting the fact that S is 1/2-independent. O

Proof of Claim 7.18. Assume that more than 2¢ new occurrences are created. Since these occur-
rences overlap (at the bit flip location),the same argument as in Claim 7.16 implies that there must
be two of them, P; and P, that are shifted (one from the other) by some vector t € Z%, where
|ti| < k/2 Vi € [d]. By Claim 7.17, P (and hence also P, and P») has a cycle of size t. Let x be the
point in M of the (central) flipped bit in Py and consider the point #’ = z + ¢, which is also in P,
since |t;] < k/2 V1 < i < k. The occurrence P, overlaps both locations = and 2’ (since both new

occurrences P} and P» overlap the bit flip location  and P, is shifted by ¢ from P;, which overlaps
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x). On one hand we have M, = M, (before the bit flip), since both locations belong to Py, which
has a cycle of size t. On the other hand, M, # M,s, since these locations both belong to P, and
must be equal after flipping M, as P> has a cycle length of ¢. This leads to a contradiction. ]

The proof of the lemma is now complete by combining the above claims. O

7.4 Tests for Pattern Freeness

We describe efficient tests for both the one-dimensional and the d-dimensional removable patterns
that have tolerance and query complexity that only depend on d (and not on k; using a completely
naive test, it can be seen that the tolerance and the query complexity depend on k). The tests
essentially approximate the hitting number, which is related to the deletion number by the char-
acterizations that were shown in Section 7.3. We start by presenting the distance approximation

algorithm for P-freeness, which has both additive and multiplicative errors.

Theorem 7.19 (Approximating the deletion number in one dimension). Let P be a removable
string of length k and fiz constants 0 < 7 < 1,0 < § < 1/k. Let hy,ha : [0,1] — [0,1] be defined as
hi(e) = (1 —7)e — 6 and ha(e) = e + 8. There exists an (hy, he)-distance approxzimation algorithm
for P-freeness with query complexity and running time of O(1/k76?).

Note that dp(S) = hp(S) < n/k always holds, so having an additive error parameter of § > 1/k
is pointless. The proof of Theorem 7.19 can be adapted to derive (£1,e2)-tolerant tests for any
0 < &1 < &9 <1, which we describe in Theorem 7.20.

Theorem 7.20. Let P be a removable string of length k and let 0 < g1 < g9 < 1. There exists an
(1, e2)-tolerant tester whose number of queries and running time are O(e3/(e2 — £1)%) where the

constant term does not depend on k.

Corollary 7.21 (Multiplicative tolerant test for pattern freeness in 1D). Fiz 0 < 7 < 1. For any
0 < & <1 there exists a (1 — 7)e,e)-tolerant test whose number of queries and running time are
O(e~1773).

It is not clear whether this upper bound is tight in general. However, for the important special
case of tolerant testers with multiplicative tolerance of 1+ 7, where 7 > 0 is a constant, the above
tester is optimal (up to a multiplicative constant that depends on 7), as is shown by taking eo = ¢

and £; = (1 — 7)e in Theorem 7.20, leading to the multiplicative tester given in Corollary 7.21.

Proof of Theorems 7.19 and 7.20. Let S be a string of length n > Sk, where § = 3/7. Write
e =0p(S) and let H C [[n]] be a hitting set for P in S whose size is en. That is, H is a minimal
set of locations that satisfies the following: if S contains a copy of P starting at location [, then
{l,....,1+k—=1}NH # ¢. For i € [[n]] let I; denote the “cyclic interval” of length Sk starting at i.
That is, if i+Bk > nthen I; = {i,...,n}U{0,...,i+Bk—n—1} and otherwise I; = {i,...,i+0;—1}.
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Let the random variable X denote the size of the minimal hitting set H; for P in the interval I,
divided by Sk, where i € [[n]] is chosen uniformly at random. Note that X is computable in time
O(Bk), by Theorem 7.11. Let u and o2 denote the expectation and the variance of X, respectively.
By the minimality of H;, we have that |H;| < |H N ;| since the set in the RHS is a hitting set for
P with respect to the interval I;. Thus, u < E[|H N IL;|]/Bk = €. Next we bound u from below.
Since H; hits all P-copies that lie exclusively inside I;, and by the minimality of H, we must have
|H;| > |H N I/| where I/ is the cyclic interval that starts in ¢ + k& and ends in (i + (8 — 1)k — 1)
mod n. Therefore, p > E[H NI]]/Bk = (1 —2/B)e > (1 — 7)e. To conclude, we have seen that
(1 =7)e < pu <e. To compute the variance of X, note that 0 < X < 1/k, as there exist 5 entries
in I; such that any sub-interval of length k in I; contains at least one of them. By convexity, the
variance satisfies 0% < kp(1/k—p)?+ (1 —kp)(0—p)? = p(1/k—p) < e/k. Now let Y = 1 22:1 X;
where the X; are independent copies of X and ¢t will be determined later. Then E[Y] = p and
Var(Y) = 0%/t < ¢/kt.

Recall that (1 — 7)e < p < g, so to get the desired approximation, it suffices to estimate Y
with an additive error of no more than ¢ with constant probability. Chebyshev’s inequality implies
that it suffices to have Var(Y) = ©(62). In other words, it will be enough to sample ¢ = O(g/k5?)
blocks, each of size Bk = ©(k/7). In total, it is enough to make O(ke(1/k — €)/76?) = O(e/74?)
queries. In the setting of approximation, € is not known in advance, but € < 1/k always holds, so
sampling ¢ = O(1/k%5?) blocks would suffice to get the desired additive error. The return value of
the approximation algorithm will be its estimate of Y. The query complexity and running time are
Btk = ©(1/k762). This finishes the proof of Theorem 7.19.

Now consider the setting of (£1,e2)-tolerant testing. By monotonicity of the tester, we can
assume that we are given a string whose distance from P-freeness is either exactly €9 or exactly
g1. Pick e = €9, § = (g9 — £1)/4, T = (g2 — 1) /4e2, and sample t = O(¢/kd?) blocks, with query
complexity and running time ©(e/78?) = O(e3 /g2 — £13), as was stated above. If the given string S
is eo-far from P-freeness, then with probability at least 2/3, after sampling t = ©(¢/76?) samples,
the value of Y will be bigger than (e2) * (1 —7) —d = (2 +¢1)/2. On the other hand, if S is e-close
then with probability at least 2/3, Y < &1 + 0 < (e2 + €1)/2 Therefore, the tester will answer that
the input is eo-far if and only if Y > (e + £1)/2. This concludes the proof of Theorem 7.20. O

For the multidimensional case, our distance approximation algorithm and tolerant test for P-
freeness are given in Theorems 7.22 and 7.23. As their technical details are very similar to those

in the 1D case, we provide only a sketch of the main ideas.

Theorem 7.22 (Approximating the deletion number in multidimensional arrays). Let P be a re-
movable (k,d)-array and fix constants 0 < 7 < 1,0 <& < 1/k?. Let hy,hy : [0,1] — [0,1] be defined
as hi(e) = (1 — 7)%;'e — § and ha(e) = & + 6. There exists an (hi, he)-distance approzimation
algorithm for P-freeness making at most /k?796% queries, where v > 0 is an absolute constant,

and has running time C; /k%6? where C; is a constant depending only on T.
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Theorem 7.23 (Multiplicative tolerant test for pattern freeness in multidimensional arrays). Fiz
0 <7 <1 and let P be a removable (k,d)-array. For any 0 < e < 1 there exists a ((1—7)%a; e, ¢)-
tolerant test making Cre~' queries, where C; = O(1/74(1— (1 —1)%)?2). The running time is CLe™"

where CI. depends only on .

Proof sketch for Theorems 7.22 and 7.23. Take 8 = 2/7. Let A be an (n,d)-array where we may
assume that n > Sk for a suitable choice of C'. Again, the strategy is to take ¢t (to be determined)
independent samples of blocks of size Sk X ... x Sk and compute the hitting number of each
sampled block. Note that (as opposed to the one-dimensional case), computing the minimal hitting
set is generally an INP-complete problem, but since the hitting number of each of these blocks
is at most ¢ = O(7~%), here we may compute it with running time that depends only on 7
and d. As in the 1D case, the expected relative hitting number p of a sampled block satisfies
(1 —7)%hp(A) = (1 —2/B)?hp(A) < u < hp(A). The variance of the hitting number for a single
sample is no bigger than k%(1/k% — p)? + (1 — k%u)p?® = p(1/k% — p) < p/k?, so for t samples it
is O(hp(A)/k%). To get additive error of at most § with constant probability, we may have (by
Chebyshev’s inequality) hp(A)/k% = ©(62), or t = O(hp(A)/k15?).

Therefore, for an approximation algorithm (in which we don’t know hp(A) in advance, though
we have an upper bound of hp(A) < 1/k%), t = ©(k~295=2) sampled blocks are enough, and the
total number of samples is O(1/k%796%). For a ((1 — 7)%, ¢)-tolerant tester for the hitting number
(which translates to a ((1 — T)dagla,a)—tolerant tester for the deletion number), as observed in
the 1D case, when deciding on the number of samples we may assume that hp(A) = € and pick
§=0((1-(1-7)%e),s0t = O(c/k%?) = O(1/k%(1—(1—7)%)2e) sampled block suffice. Since each
block is of size ©(k?/7?), the total number of queries is O(Cre™!) where C; = 1/7%(1 — (1 — 7)%)2,
while the running time is CZe~!, where C. depends on the time required to compute the hitting

number in a single sampled block. O

7.5 Discussion and Open Questions

This chapter address the property of pattern-freeness for a single forbidden pattern. Naturally, the
problem of approzimate pattern matching is an intriguing venue for further research and might
be of practical interest. While recent results by Chan et al. [49] (see also [134]) address a related
problem in one dimension, efficient testing for approximate pattern matching in higher dimensions
is left as an open problem. The family of forbidden patterns for this problem might consist of a
pattern and all patterns that are close enough to it, and the distance measures between patterns
might also differ from the Hamming distance (e.g., ¢ distance for grey-scale patterns).

It is also desirable to settle the problem of testing pattern freeness for the almost homogeneous
case by either finding an efficient test for the almost homogeneous multi dimensional case, or proving
that an efficient test cannot exist for such patterns. Additionally, it is of interest to examine which
of the [[k]]¢ patterns with k < 3 - 2% are removable.
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Chapter 8

Conclusions

In this thesis, we conduct a systematic study of property testing in data with complex structure, a
topic that has not been well-understood throughout the years. The contributions span several new

concepts and new types of results in multiple objects of interest, including;:

Structural characterizations We prove several wide structural results that lead to new efficient
property testing algorithms for very general classes of properties, including all hereditary
properties of 2D structured objects (Chapter 2) and all local properties of one- and multi-
dimensional arrays (Chapter 6). Such general testability results were known before only for
objects that exhibit inherent symmetry, like unordered graph properties and symmetric distri-
bution properties, and were missing for objects with complex structure. The characterizations

obtained here can roughly be divided into two types.

The first type, exhibited in Chapter 2, substantially extends important characterizations from
the unordered regime (i.e., for unordered graph properties) to the ordered regime by com-
pletely relaxing the need for symmetry in the combinatorial techniques and proofs. Informally,
this type of extension suggests that “ultimately global” properties of structured objects be-
have in high-level quite similarly to symmetric properties of unordered objects. Following
the results of Chapter 2, this was subsequently explored in recent years to obtain a relatively

good understanding of what makes global properties testable in ordered structures [24, 25].

The second type, described in Chapter 6, is entirely new and does not resemble any char-
acterizations from the unordered/symmetric setting. Instead, it takes a new perspective on

property testing which relies on a new, seemingly useful, notion of locality discussed below.

What is testable? One of the central barriers to good understanding of structured property
testing has been a lack of relevant notions and definitions. Indeed, to understand “what is
testable”, one needs to define classes of properties of interest, with a shared trait that al-
lows for efficient testability. In Chapter 6, we define the class of local properties, and show

that numerous interesting properties are local: monotonicity, Lipschitz continuity, convex-
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ity, submodularity, and others. Notably, a corresponding definition for “global” properties,
the earthmover-resilient ones, has been defined outside the context of this thesis [24]. The
combination of these two families already captures a lot of the properties of interest in the

structured setting.

Surprising combinatorial phenomena Property testing in structured settings usually reveals
beautiful and surprising combinatorial phenomena that were not previously evident in other
contexts. The best examples in this thesis are perhaps the results in the second part, on
detecting structural patterns in sequential data, and especially the non-adaptive pattern-
dependent lower bounds (based on stitching and other interesting combinatorial parameters,
see Chapter 3) and the structural decomposition results for monotone patterns (see Chapter 3
and, to a lesser extent, Chapter 4). This phenomenon is also clearly evident in the third part,
in our study of locality, where property testing algorithms benefit from a rather unorthodox
non-explicit perspective on the data via the structure of boundaries (Chapter 6) or from a

new family of combinatorial arguments, so-called modification lemmas (Chapter 7).

Adaptivity Assessing to what extent adaptivity helps in general is perhaps the most important
challenge in structured property testing. However, understanding adaptivity seems very dif-
ficult in general: on the one hand, non-adaptive algorithms are usually tightly connected
to the combinatorial characteristics of the problem, with a smaller algorithmic component,
which makes proving upper and especially lower bounds much easier. On the other hand,
proving upper bounds for adaptive algorithms typically require both excellent combinatorial
understanding of the problem and new algorithmic ideas, and obtaining any non-trivial lower
bounds for them (beyond the most basic properties like monotonicity testing) is a major open
problem. In this thesis we make a preliminary step in utilizing the power of adaptivity. Spe-
cifically, in Chapter 4, we show how strong structural characterizations can be combined with
wishful thinking algorithms to yield an effective adaptive algorithm for detecting monotone

patterns in sequential data.

8.1 Central Open Problems

While this thesis makes several steps forward in the systematic investigation of structured property
testing, the field is still at a relatively early stage, and many central and interesting problems are
still wide open. Various open problems are scattered along the different chapters, specifically in
Sections 2.1, 5.1.3, 6.1.5, and 7.5. Below, we summarize the directions for future research which

we believe are the most interesting.
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8.1.1 The Quest for Adaptivity

Perhaps the most important challenge in this regime is to understand the power of adaptive al-
gorithms, and how it compares to non-adaptive ones. With the possible exception of Chapter 2
(where adaptivity doesn’t help much [24, 86]), it is plausible that for all main directions of research
explored in this thesis, adaptivity should help immensely. Here we present several central open

questions regarding adaptivity.

Adaptive detection of patterns in sequential data The first open question, posed by New-

man et al. [108, 109] and discussed in detail in Chapter 5, asks the following.

Is it true that for any order pattern m of fixed length, detecting a m-copy in a sequence
that is ©(1)-far from w-freeness requires a number of queries that is only polylogarithmic

in the sequence length?

A positive answer (which we believe holds here) would be a major breakthrough, not only because of
the conceptual message that structure can be explored adaptively very effectively, but also because
non-adaptive algorithms are very weak here: in Chapter 5 we have seen that most patterns of
length k require @(nl_l/ (k_e(l))) non-adaptive queries, a minimal improvement over the trivial

sampling-based algorithm.

Adaptivity for local properties The other major questions on adaptivity relate to local prop-
erties. In Chapter 6, we mention that the non-adaptive generic algorithm for local properties is
optimal among non-adaptive algorithms for any fixed dimensionality d, and ask whether adaptive

algorithms can break this barrier. Specifically, we ask the following.

Is it true that any O(1)-local property of d-dimensional arrays over [n] is testable with
f(d) - g(n) adaptive queries, where f(d) depends only on d, and g(n) depends only

(reasonably) on n?

This should be compared to the tight ©(n?!) non-adaptive query complexity, and would imply

that an effective domain size reduction can be achieved with adaptivity.

Adaptivity and convexity Finally, the problem of convexity testing poses a major challenge
with respect to adaptivity. This important property, very relevant for the field of optimization,
seems very challenging to attack from the property testing perspective. Our non-adaptive up-
per bound of O(n?!) is the first sublinear upper bound known for convexity testing in multiple
dimensions, and was very recently shown to be tight non-adaptively for d = 2 by Belovs, Blais
and Bommireddi [20]. However, for adaptive algorithms no such limitations are known, and the

following was asked in [20]:

173



Can two-dimensional convexity testing be conducted with a polylogarithmic number of

adaptive queries?

This would, again, imply an exponential separation from the ©(n) non-adaptive query complexity.
In higher-dimensional convexity testing, one may guess (see [20]) that the adaptive query complexity
is of the form f(d) - g(n) as suggested above, where g(n) might be only polylogarithmic in n, and
f(d) is at most exponential (and perhaps even polynomial) in d. In contrast, for non-adaptive

Q(d)

algorithms, an n**'*) lower bound is proved in [20].

8.1.2 Better Structural Understanding

In several occasions throughout the thesis, the structural understanding we currently have leaves
much to be desired. In these cases, better structural understanding would lead to more efficient

algorithms or to a wider applicability of the currently known algorithms.

Efficient matrix removal lemma The results in Chapter 2 show that any hereditary property
of ordered graphs and matrices is testable with a constant number of queries. However, this number
of queries, while technically independent of the graph or matrix size, is enormous: it is at least
a wowzer (tower of tower) type in the proximity parameter ¢, as it relies on strong variants of
Szemerédi regularity lemma. In 2007, Alon, Fischer, and Newman [8] devised an efficient regularity
lemma for ordered binary matrices, where the dependence between the parameters is polynomial.
They used this lemma to show that any unordered binary matrix property characterized as F-
freeness for a finite family F of forbidden submatrices has a removal lemma with polynomial
dependence in e, which leads to poly(1/e)-query tests for all such properties. They posed the
ordered analogue as an open problem. In [6], some progress is made towards settling this question,
by proving a removal lemma for all “semi-ordered” properties of this type. The problem in its
full generality, of proving efficient removal lemmas for the ordered case, is however wide open. We
phrase a seemingly simple special case of this question from [8], where the forbidden family F

consists of just a single forbidden submatrix F'.

Consider the property of F-freeness in binary matrices, where F is a single, fived size
forbidden matriz. Does this property satisfy a removal lemma where the dependence

between the parameters is polynomial? if not, what about an exponential dependence?

We conclude by mentioning that the proof from Chapter 2 can be combined with the efficient
regularity lemma from [8] to obtain a tower-type bound (instead of a wowzer-type one) for binary
matrices. Perhaps the first step would be to refine this proof so as to obtain a bound with a tower

of constant height (e.g., a doubly-exponential bound).

Extending the modification lemma In Chapter 7, we prove that nearly all consecutive pat-

terns in d dimensions (except for the almost homogeneous ones), of side length at least 2-3%, satisfy
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a modification lemma. As the only known lower bound asserts that the side length should be at

least 3, there is a huge gap here. It is thus natural to ask the following.

Can one obtain a full characterization of those patterns that satisfy a modification
lemma? In particular, is it true that for any pattern of side length at least, say, 10,

which is not almost homogeneous, a modification lemma holds?

As the property of approximate pattern freeness described in the same chapter is also of interest,

we ask the following.

In what situations can a modification lemma type argument be proved for the property

of approrimate pattern freeness?

Modification lemmas also seem relevant for applications in computational biology, where one wishes
to efficiently “clean” a genetic sequence from instances of forbidden patterns, e.g. due to the need to
produce sequences without problematic substrings that can trigger the immune system. We leave

the general task of exploring modification lemmas in computational biology for future research.

Pattern-dependent upper bounds for sequential data The results in Chapter 5 demonstrate
a pattern-dependent lower bound for detecting general (i.e., non-monotone) patterns with non-
adaptive algorithms. However, at this point the generic algorithms we have are only known to
be optimal for the hardest patterns, and do not take the structure of the pattern into account.
This is in contrast to the lower bound side, where we have a relatively good understanding of non-
adaptive algorithms, via the unique signed partition number (USPN) parameter that we devise.

To summarize, our question here is as follows.

How can one devise non-adaptive algorithms (upper bounds) for sequential pattern de-

tection that take the structure of the particular pattern into account?

175



176



Bibliography

[1]

P. Afshani, K. Matulef, and B. T. Wilkinson. Property testing on linked lists. Electronic
Colloquium on Computational Complexity (ECCC), 20:187, 2013.

N. Ailon, B. Chazelle, C. Seshadhri, and D. Liu. Estimating the distance to a monotone
function. Random Structures & Algorithms, 31:371-383, 2007.

N. Alon. Testing subgraphs in large graphs. Random Structures & Algorithms, 21:359-370,
2002.

N. Alon, O. Ben-Eliezer, and E. Fischer. Testing hereditary properties of ordered graphs
and matrices. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS), pages 848-858, 2017.

N. Alon, R. A. Duke, H. Lefmann, V. Rédl, and R. Yuster. The algorithmic aspects of the
regularity lemma. Journal of Algorithms, 16:80-109, 1994.

N. Alon and O. Ben Eliezer. Efficient removal lemmas for matrices. Order, 37:83-101, 2020.

N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Efficient testing of large graphs. Com-
binatorica, 20:451-476, 2000.

N. Alon, E. Fischer, and I. Newman. Efficient testing of bipartite graphs for forbidden induced
subgraphs. SIAM Journal on Computing, 37:959-976, 2007.

N. Alon, E. Fischer, I. Newman, and A. Shapira. A combinatorial characterization of the
testable graph properties: it’s all about regularity. SIAM Journal on Computing, 39:143-167,
2009.

N. Alon, M. Krivelevich, I. Newman, and M. Szegedy. Regular languages are testable with a
constant number of queries. SIAM Journal on Computing, 30:1842-1862, 2001.

N. Alon and A. Shapira. Every monotone graph property is testable. In Proceedings of the
37th Annual ACM Symposium on Theory of Computing (STOC), pages 128137, 2005.

177



[12]

[13]

[14]

23]

[24]

[25]

N. Alon and A. Shapira. A characterization of the (natural) graph properties testable with
one-sided error. SIAM Journal on Computing, 37:1703-1727, 2008.

N. Alon and J.H. Spencer. The Probabilistic Method. Wiley Publishing, 4th edition, 2016.

A. Amir and G. Benson. Two-dimensional periodicity in rectangular arrays. SIAM Journal
on Computing, 27:90-106, 1998.

A. Amir, G. Benson, and M. Farach. An alphabet independent approach to two-dimensional
pattern matching. SIAM Journal on Computing, 23:313-323, 1994.

P. Awasthi, M. Jha, M. Molinaro, and S. Raskhodnikova. Testing Lipschitz functions on
hypergrid domains. Algorithmica, 74:1055-1081, 2012.

M. Axenovich, Y. Person, and S. Puzynina. A regularity lemma and twins in words. Journal
of Combinatorial Theory, Series A, 120:733-743, 2013.

A. Belovs. Adaptive Lower Bound for Testing Monotonicity on the Line. In Approzim-
ation, Randomization and Combinatorial Optimization. Algorithms and Techniques (AP-

PROX/RANDOM), pages 31:1-31:10, 2018.

A. Belovs and E. Blais. Quantum algorithm for monotonicity testing on the hypercube.
Theory of Computing, 11:403-412, 2015.

A. Belovs, E. Blais, and A. Bommireddi. Testing convexity of functions over finite domains.
In Proceedings of the 31st ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
2030-2045, 2020.

O. Ben-Eliezer. Testing local properties of arrays. In Proceedings of the 10th Conference on
Innovations in Theoretical Computer Science (ITCS), pages 11:1-11:20, 2019.

O. Ben-Eliezer, C. Canonne, S. Letzter, and E. Waingarten. Finding monotone patterns
in sublinear time. In IEEE 60th Annual Symposium on Foundations of Computer Science
(FOCS), pages 1469-1494, 2019.

O. Ben-Eliezer and C. L. Canonne. Improved bounds for testing forbidden order patterns.
In Proceedings of the 29th ACM-SIAM Symposium on Discrete Algorithms (SODA ), pages
2093-2112, 2018.

O. Ben-Eliezer and E. Fischer. Earthmover resilience and testing in ordered structures.
In Proceedings of the 33rd Computational Complexity Conference (CCC), pages 18:1-18:35,
2018.

O. Ben-Eliezer, E. Fischer, A. Levi, and Y. Yoshida. Limits of ordered graphs and their
applications. arXiv preprint arXiv:1811-02023, 2018.

178



[26]

[31]

32]

[37]

O. Ben-Eliezer, S. Korman, and D. Reichman. Deleting and testing forbidden patterns in
multi-dimensional arrays. In Proceedings of the 44th International Colloguium on Automata,
Languages and Programming (ICALP), 2017.

O. Ben-Eliezer, S. Letzter, and E. Waingarten. Optimal adaptive detection of monotone
patterns. arXiv preprint arXiw:1911-01169, 2019.

B. A. Berendsohn, L. Kozma, and D. Marx. Finding and counting permutations via CSPs.
In 14th International Symposium on Parameterized and Ezxact Computation (IPEC), volume
148, pages 1:1-1:16, 2019.

P. Berman, M. Murzabulatov, and S. Raskhodnikova. Constant-time testing and learning of

image properties. arXiw preprint arXiv:1503-01363, 2015.

P. Berman, M. Murzabulatov, and S. Raskhodnikova. Tolerant testers of image properties. In
Proceedings of the 43th International Colloquium on Automata, Languages and Programming
(ICALP), pages 90:1-90:14, 2016.

P. Berman, M. Murzabulatov, and S. Raskhodnikova. Testing convexity of figures under the
uniform distribution. Random Structures € Algorithms, 54:413-443, 2019.

P. Berman, S. Raskhodnikova, and G. Yaroslavtsev. L,-testing. In Proceedings of the 46th
ACM Symposium on the Theory of Computing (STOC), pages 164-173, 2014.

H. Black, D. Chakrabarty, and C. Seshadhri. A o(d)-polylogn monotonicity tester for boolean
functions over the hypergrid [n]¢. In Proceedings of the 29th ACM-SIAM Symposium on
Discrete Algorithms (SODA ), pages 2133-2151, 2018.

E. Blais and A. Bommireddi. Testing submodularity and other properties of valuation func-
tions. In Proceedings of the 8th Conference on Innovations in Theoretical Computer Science

(ITCS), pages 33:1-33:17, 2017.

E. Blais, J. Brody, and K. Matulef. Property testing lower bounds via communication com-
plexity. Computational Complezity, 21:311-358, 2012.

E. Blais, S. Raskhodnikova, and G. Yaroslavtsev. Lower bounds for testing properties of
functions over hypergrid domains. In Proceedings of the 29th Conference on Computational
Complezity (CCC), pages 309-320, 2014.

C. Borgs, J. Chayes, L. Lovész, V. T. Sés, B. Szegedy, and K. Vesztergombi. Graph limits and
parameter testing. In Proceedings of the 38th ACM Symposium on the Theory of Computing
(STOC), pages 261-270, 2006.

179



[38]

[49]

[50]

R. S. Boyer and J. S. Moore. A fast string searching algorithm. Communications of the ACM,
20:762-772, 1977.

A. Brandstadt, V.B. Le, and J.P. Spinrad. Graph Classes: A Survey. Monographs on Discrete
Mathematics and Applications. Society for Industrial and Applied Mathematics, 1999.

J. Briét, S. Chakraborty, D. Garcia-Soriano, and A. Matsliah. Monotonicity testing and
shortest-path routing on the cube. Combinatorica, 32:35-53, 2012.

C. L. Canonne, E. Grigorescu, S. Guo, A. Kumar, and K. Wimmer. Testing k-monotonicity.
In Proceedings of the 8th Conference on Innovations in Theoretical Computer Science (ITCS),
pages 29:1-29:21, 2017.

C. L. Canonne and Tom Gur. An adaptivity hierarchy theorem for property testing. Com-
putational complexity, 27:671-716, 2018.

D. Chakrabarty. Monotonicity testing. In M. Kao, editor, Encyclopedia of Algorithms, pages
1352-1356. Springer Berlin Heidelberg, 2014.

D. Chakrabarty, K. Dixit, M. Jha, and C. Seshadhri. Property testing on product distribu-
tions: optimal testers for bounded derivative properties. ACM Transactions on Algorithms,
13:20:1-20:30, 2017.

D. Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity and Lipschitz testing
over hypercubes and hypergrids. In Proceedings of the 45th ACM Symposium on the Theory
of Computing (STOC), pages 419-428, 2013.

D. Chakrabarty and C. Seshadhri. An optimal lower bound for monotonicity testing over
hypergrids. Theory of Computing, 10:453-464, 2014.

D. Chakrabarty and C. Seshadhri. An o(n) monotonicity tester for boolean functions over
the hypercube. SIAM Journal on Computing, 45:461-472, 2016.

D. Chakrabarty and C. Seshadhri. Adaptive boolean monotonicity testing in total influence
time. In Proceedings of the 10th Conference on Innovations in Theoretical Computer Science
(ITCS), pages 20:1-20:7, 2019.

T. M. Chan, S. Golan, T. Kociumaka, T. Kopelowitz, and E. Porat. Approximating text-to-
pattern hamming distances. In Proccedings of the 52nd Annual ACM SIGACT Symposium
on Theory of Computing (STOC), pages 643-656, 2020.

X. Chen, A. De, R. A. Servedio, and L. Tan. Boolean function monotonicity testing requires
(almost) n'/2 non-adaptive queries. In Proceedings of the 47th ACM Symposium on the Theory
of Computing (STOC), pages 519-528, 2015.

180



[51]

[62]

[63]

[64]

X. Chen, A. Freilich, R. A. Servedio, and T. Sun. Sample-based high-dimensional convexity
testing. In Approzimation, Randomization and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM), pages 37:1-37:20, 2017.

X. Chen, R. A. Servedio, and L. Tan. New algorithms and lower bounds for monotonicity
testing. In Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 285—295, 2014.

X. Chen, E. Waingarten, and J. Xie. Beyond Talagrand functions: new lower bounds for
testing monotonicity and unateness. In Proceedings of the 49th ACM Symposium on the
Theory of Computing (STOC), pages 523-536, 2017.

Richard Cole. Tight bounds on the complexity of the boyer—-moore string matching algorithm.
SIAM Journal on Computing, 23:1075-1091, 1994.

D. Conlon and J. Fox. Bounds for graph regularity and removal lemmas. Geometric and
Functional Analysis, 22:1191-1256, 2012.

D. Conlon and J. Fox. Graph removal lemmas. In Surveys in Combinatorics, 2013.

D. Conlon, J. Fox, C. Lee, and B.Sudakov. Ordered ramsey numbers. Journal of Combinat-
orial Theory, Series B, 122:353-383, 2017.

M. Crochemore, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq, W. Plandowski, and

W. Rytter. Speeding up two string-matching algorithms. Algorithmica, 12:247-267, 1994.

P. Damaschke. Forbidden ordered subgraphs. In Rainer Bodendiek and Rudolf Henn, editors,
Topics in Combinatorics and Graph Theory: Essays in Honour of Gerhard Ringel, pages 219—
229. Physica-Verlag HD, 1990.

R. P. Dilworth. A decomposition theorem for partially ordered sets. Annals of Mathematics,
51:161-166, 1950.

P. Erdds and G. Szekeres. A combinatorial problem in geometry. Compositio Mathematica,
2:463-470, 1935.

F. Ergiin and H. Jowhari. On the monotonicity of a data stream. Combinatorica, 35:641-653,
2015.

F. Ergiin, S. Kannan, S. R. Kumar, R. Rubinfeld, and M. Vishwanthan. Spot-checkers.
Journal of Computer and System Sciences, 60:717-751, 2000.

C. Even-Zohar and C. Leng. Counting small permutation patterns. arXiv preprint
arXiv:1911-01414, 2019.

181



[65]

[66]

[67]

[70]

[71]

U. Feige, T. Koren, and M. Tennenholtz. Chasing ghosts: Competing with stateful policies.
SIAM Journal on Computing, 46:190-223, 2017.

E. Fischer. On the strength of comparisons in property testing. Information and Computation,
189:107-116, 2004.

E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld, and A. Samorodnitsky.
Monotonicity testing over general poset domains. In Proceedings of the 34th ACM Symposium
on the Theory of Computing (STOC), pages 474-483, 2002.

E. Fischer and I. Newman. Testing of matrix properties. In Proceedings of the Thirty-Third
Annual ACM Symposium on Theory of Computing (STOC), pages 286-295, 2001.

E. Fischer and I. Newman. Testing of matrix-poset properties. Combinatorica, 27:293-327,
2007.

E. Fischer and I. Newman. Testing versus estimation of graph properties. SIAM Journal on
Computing, 37:482-501, 2007.

E. Fischer and E. Rozenberg. Lower bounds for testing forbidden induced substructures
in bipartite-graph-like combinatorial objects. In Approzimation, Randomization and Com-
binatorial Optimization. Algorithms and Techniques (APPROX/RANDOM), pages 464-478,
2007.

R. J. Fowler, M. S. Paterson, and S. L. Tanimoto. Optimal packing and covering in the plane
are NP-complete. Information Processing Letters, 12:133-137, 1981.

J. Fox. A new proof of the graph removal lemma. Annals of Mathematics, 174:561-579, 2011.

J. Fox. Stanley—Wilf limits are typically exponential. arXiv preprint arXiv:1310-8378, 2013.

Also: Advances in Mathematics, to appear.

J. Fox and L. M. Lovéasz. A tight lower bound for szemerédi’s regularity lemma. Combinat-

orica, 37:911-951, 2017.

A. G4l and P. Gopalan. Lower bounds on streaming algorithms for approximating the length

of the longest increasing subsequence. SIAM Journal on Computing, 39:3463-3479, 2010.

Z. Galil, J. G. Park, and K. Park. Three-dimensional periodicity and its application to pattern
matching. STAM Journal of Discrete Mathematics, 18:362-381, 2005.

Z. Galil and J. Seiferas. Time-space-optimal string matching. Journal of Computer and
System Sciences, 26:280-294, 1983.

182



[79]

[91]

L. Gishboliner and A. Shapira. Removal lemmas with polynomial bounds. In Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 510-522,
2017.

O. Goldreich, editor. Property Testing - Current Research and Surveys [outgrow of a workshop
at the Institute for Computer Science (ITCS) at Tsinghua University, January 2010/, volume
6390 of Lecture Notes in Computer Science. Springer, 2010.

O. Goldreich. Introduction to property testing. Cambridge University Press, 2017.

O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A. Samordinsky. Testing monotonicity.
Combinatorica, 20:301-337, 2000.

O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning
and approximation. Journal of the ACM, 45:653-750, 1998.

O. Goldreich and Tali Kaufman. Proximity oblivious testing and the role of invariances. In
O. Goldreich, editor, Studies in Complezity and Cryptography, pages 173-190. Springer Berlin
Heidelberg, 2011.

O. Goldreich and D. Ron. On proximity-oblivious testing. SIAM Journal on Computing,
40:534-566, 2011.

O. Goldreich and L. Trevisan. Three theorems regarding testing graph properties. Random
Structures & Algorithms, 23:23-57, 2003.

P. Gopalan, T. S. Jayram, R. Krauthgamer, and R. Kumar. Estimating the sortedness of
a data stream. In Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 318-327, 2007.

W.T. Gowers. Lower bounds of tower type for szemerédi’s uniformity lemma. Geometric and
Functional Analysis, 7:322-337, 1997.

E. Grigorescu, A. Kumar, and K. Wimmer. Flipping out with Many Flips: Hardness of
Testing k-Monotonicity. In Approzimation, Randomization and Combinatorial Optimization.

Algorithms and Techniques (APPROX/RANDOM), pages 40:1-40:17, 2018.

S. Guillemot and D. Marx. Finding small patterns in permutations in linear time. In Pro-
ceedings of the 25th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 82-101,
2014.

G. Higman. Ordering by Divisibility in Abstract Algebras. Proceedings of the London Math-
ematical Society, $3-2:326-336, 1952.

183



[92]

[93]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

M. Jha and S. Raskhodnikova. Testing and reconstruction of Lipschitz functions with applic-
ations to data privacy. SIAM Journal on Computing, 42:700-731, 2013.

S. Kalyanasundaram and A. Shapira. A wowzer type lower bound for the strong regularity
lemma. Proceedings of the London Mathematical Society, 106:621-649, 07 2011.

J. Kéarkkainen and E. Ukkonen. Multidimensional string matching. In M. Kao, editor,
Encyclopedia of Algorithms, pages 559-562. Springer US, 2008.

S. Khot, D. Minzer, and M. Safra. On monotonicity testing and boolean isoperimetric type
theorems. In Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 52-58, 2015.

I. Kleiner, D. Keren, I. Newman, and O. Ben-Zwi. Applying property testing to an image
partitioning problem. IFEEFE Transactions on Pattern Analysis and Machine Intelligence,
33:256-265, 2011.

D. E. Knuth. The Art of Computer Programming: Volume I: Fundamental Algorithms.
Pearson Education, 1997.

D. E. Knuth, J. H. Morris, Jr., and V. R. Pratt. Fast pattern matching in strings. SIAM
Journal on Computing, 6:323-350, 1977.

S. Korman, D. Reichman, G. Tsur, and S. Avidan. Fast-match: Fast affine template matching.
International Journal of Computer Vision, 121:111-125, 2017.

T. Lecroq. Fast exact string matching algorithms. Information Processing Letters, 102:229—
235, 2007.

L. Lovéasz. Large Networks and Graph Limits. American Mathematical Society colloquium

publications. American Mathematical Society, 2012.

L. Lovéasz and B. Szegedy. Szemerédi’s lemma for the analyst. Geometric and Functional

Analysis, 17:252-270, 2007.

S. Moriguchi and K. Murota. On discrete hessian matrix and convex extensibility. Journal
of the Operations Research Society of Japan, 1:48-62, 2012.

G. Moshkovitz and A. Shapira. A short proof of Gowers’ lower bound for the regularity
lemma. Combinatorica, 36:187-194, 2016.

K. Murota. Discrete Convex Analysis. Society for Industrial and Applied Mathematics, 2003.

B. Nagle, V. Rodl, and M. Schacht. The counting lemma for regular k-uniform hypergraphs.
Random Structures & Algorithms, 28:113-179, 2006.

184



[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

T. Naumovitz and M. E. Saks. A polylogarithmic space deterministic streaming algorithm for
approximating distance to monotonicity. In Proceedings of the 26th ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1252-1262, 2015.

I. Newman, Y. Rabinovich, D. Rajendraprasad, and C. Sohler. Testing for forbidden or-
der patterns in an array. In Proceedings of the 28th ACM-SIAM Symposium on Discrete
Algorithms (SODA ), pages 1582-1597, 2017.

I. Newman, Y. Rabinovich, D. Rajendraprasad, and C. Sohler. Testing for forbidden order
patterns in an array. Random Structures & Algorithms, 55(2):402-426, 2019. Preliminary
version in SODA’17 [108].

I. Newman and Christian Sohler. Every property of hyperfinite graphs is testable. SIAM
Journal on Computing, 42:1095-1112, 2013.

R. K. S. Pallavoor, S. Raskhodnikova, and N. M. Varma. Parameterized property testing of
functions. ACM Transactions on Computation Theory, 9:17:1-17:19, 2018.

M. Parnas, D. Ron, and R. Rubinfeld. On testing convexity and submodularity. SIAM
Journal on Computing, 32:1158-1184, 2003.

M. Parnas, D. Ron, and R. Rubinfeld. Tolerant property testing and distance approximation.
Journal of Computer and System Sciences, 72:1012-1042, 2006.

L. Rademacher and S. Vempala. Testing geometric convexity. In Foundations of Software
Technology and Theoretical Computer Science (FSTTCS), pages 469-480, 2004.

S. Raskhodnikova. Approximate testing of visual properties. In Approximation, Randomiz-
ation and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM),
pages 370-381, 2003.

S. Raskhodnikova. Testing if an array is sorted. In M. Kao, editor, Encyclopedia of Algorithms,
pages 2219-2222. Springer Berlin Heidelberg, 2014.

R. L. Rivest. On the worst-case behavior of string-searching algorithms. SIAM Journal on
Computing, 6:669-674, 1977.

V. Rodl and J. Skokan. Regularity lemma for k-uniform hypergraphs. Random Structures &
Algorithms, 25:1-42, 2004.

D. Ron. Property testing: A learning theory perspective. Foundations and Trends in Machine
Learning, 1:307-402, 2008.

D. Ron. Algorithmic and analysis techniques in property testing. Foundations and Trends in
Theoretical Computer Science, 5:73—205, 2009.

185



[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

133

[134]

D. Ron and G. Tsur. Testing properties of sparse images. ACM Transactions on Algorithms,
10, 2014.

R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications to
program testing. SIAM Journal on Computing, 25:252-271, 1996.

A. Rubinstein, S. Seddighin, Z. Song, and X. Sun. Approximation algorithms for lcs and
lis with truly improved running times. In IEEFE 60th Annual Symposium on Foundations of
Computer Science (FOCS), pages 11211145, 2019.

1. Z. Ruzsa and E. Szemerédi. Triple systems with no six points carrying three triangles.
Combinatorics (Proceedings of the Fifth Hungarian Colloquium, Keszthely, 1976), 2:939-945,
1978.

M. Saks and C. Seshadhri. Space efficient streaming algorithms for the distance to monoton-
icity and asymmetric edit distance. In Proceedings of the 24th ACM-SIAM Symposium on
Discrete Algorithms (SODA ), pages 1698-1709, 2013.

M. Saks and C. Seshadhri. Estimating the longest increasing sequence in polylogarithmic
time. SIAM J. Comput., 46:774-823, 2017.

C. Seshadhri and J. Vondrak. Is submodularity testable? Algorithmica, 69:1-25, 2010.

R. Simion and F. W. Schmidt. Restricted permutations. Furopean Journal of Combinatorics,
6:383-406, 1985.

M. Sudan. Invariance in property testing. In O. Goldreich, editor, Property Testing: Current
Research and Surveys, pages 211-227. Springer Berlin Heidelberg, 2010.

X. Sun and D. P. Woodruff. The communication and streaming complexity of computing the
longest common and increasing subsequences. In Proceedings of the 18th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 336-345, 2007.

E. Szemerédi. Regular partitions of graphs. Problémes combinatoires et théorie des graphes
(Interbational Coloquium of the CNRS, Orsay, 1976), pages 399-401, 1978.

T. Tao. A variant of the hypergraph removal lemma. Journal of Combinatorial Theory,
Series A, 113:1257-1280, 2006.

T. Tao. Structure and Randomness: Pages from Year One of a Mathematical Blog. American
Mathematical Society, 2008.

P. Uznanski. Approximating Text-To-Pattern Distance via Dimensionality Reduction. In 37st
Annual Symposium on Combinatorial Pattern Matching (CPM), pages 29:1-29:11, 2020.

186



[135] P. Valiant. Testing symmetric properties of distributions. In Proceedings of the 40th ACM
Symposium on the Theory of Computing (STOC), pages 383-392, 2008.

[136] J. van Leeuwen. Graph algorithms. In Handbook of Theoretical Computer Science (Vol. A):
Algorithms and Complezity, pages 525-631. MIT Press, 1991.

[137] V. Vatter. Permutation classes. In Handbook of Enumerative Combinatorics, chapter 12.
CRC Press, 2015.

[138] Y.Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, D. Ron, and A. Samorodnitsky. Im-
proved testing algorithms for monotonicity. In Approzimation, Randomization and Com-
binatorial Optimization. Algorithms and Techniques (APPROX/RANDOM), pages 97-108,
1999.

187



D'MINNA NYAN IT NN IPNYT N'¥A'0IMN . TA72 TAR 12K N7Y2 NIIOK NNSWN DY ,NMIPN X' 1T N1DN
NINAN NXR'YN7 D7V DMNNIATZRA MIYNYN IX W' 0N ,NAYNIMN 'R IR NI D217 D
NN N750 'R 7Y NIDNY 7'V DR DNNIIAYR RN RO DTN ARYINN YT Y 01T Nimda Nifmipn
D'A'¥N 11X 0N .7-2 17N 'R X 1 /-2 NXA'? 21 d T 19N DNNIIAYRN YW NinaTn 1oon P
NUR-NP X' IT N2 QNIF D' DYTA'NA ;TAM-TNA NN DA 7NN Y 21 21IWN7 DNNIRYN
NNTO "7 7w 0'DIX7 ,NIYN D171 D'V NI NI7'YRA RN 7Y 291N 21w'n Y nwan [72]

AWONN 7DD 0w Y |07 290N 1IN NI'M"Ya NI'aNN 'via yTn

N'2N 727 VYND :NNAN NWON KINLAI'WN N1A7 01N 1IRY ,NNJINN 7V '0NNNN ['VIaN . N'onNn N'NYN
,P 7w DT y9Ina Inw'7D Diz'ma v 0 ,N9I¥Y Nand P 7w yoin 7'onn A 1wn 7371 ,P 7'90n NI
N'Y' NIPOND DY ,N0N NN7 NDINY N1 11D 'Y Nn'7n .P 9 D'WTN 0PNy DY DN K7 1''wy

.N9IXT N12ND P 7w 0750 'Rkn A nzhnnd Ning? Xin A-2 P 'yoin 190n ,n7v

.N2N MR 7Y NI00IAN AT 7702 NIAXINND NIRXIND NN
O. Ben-Eliezer, S. Korman, D.Reichman, Deleting and testing forbidden patterns in multi-
dimensional arrays, Proc. 44th International Colloquium on Automata, Languages and
Programming (/ICALP), 2017, 9:1--9:14.



niMipn NRRNY ' onNax

.6 17192 NIY'SIN IT NO09] NINXINNA NIXRXINN

d-2 nimipn-k-n NRIDNN 72 NP'TA7 NCTTY-TN ARAY OV L,'770 DN RN 6 7192 NFTINN ARXINN

k
nMpna 0 (; . log%) NIN WITIN NIN'ATN 1900 .(VIAp 77122 N1dN2A X7) '910 £ N'97R 72 yn .0

K d-1
D1'N D'M'XNAN D'oNN ,0'WIAP k, £ 1y , 0101 .00m'n d > 1Ay v (0(m))” -1, mm-Tnn

21 TNX TA'NA ,NIIDN 7 AN (120 1Y DFPITY D'7ANRN 0'nonn .anknna 0(n%1) -1 0(logn)
NP7 0'"INA7-NN DMNNRAYR 022NN 0T 7 DNMIYX 7Y 1019 NOpnd N 0'Niaa DfTnma

[20] 17x% nnpN NP7 DRIYRIN DTIRIY-NNN DRNNIATRD 17X .02 DT DINIITN-Nn Nnmye

NIYXNANA NP'TA7 NN NIMIVIRIMY 127 [63] 0NINNI (AR 7W D'OX'770 NNDINA 12N .N'UNNN N'MYN
NTIY ,[n] NAR 7Y 2T IR WIDN YXIILE € [n] 'RIPR 12K N2 .N1M'09TR K7 NinaT 0 (logn)
77NN M2 DNAY DMA'RN DX Q € [n] XNN .i-2 D"NOoN XN YNN 71 XD 17 27NNnn
NYNN @ NA'R 72 NNAT TR ,NIMIVIAIMA DRZINT-€ D' NNTOoN DRY X' [63] 7w n'to>Inn nmyon .)*7nnn

.DNNRAYRN T 7Y ANUNT? DNAN 7221 ,N11I0NIM NI'R AMTONY ']3'7 NNJIN NINSDY? € NINANON]

DWY .N'Mizn NN 7D NP7 0'RNN NIMIVRIM NP7 707 INIMNN [1I'van L,Y'Mon 91X D 0'RIN X
AWND 0N [Ij7'N 02 12X A1V 7WNR-NNW X .d = 1,k = 2 12 QN1 uiwosn npna 2Iani ninn

17w 01190 DY DX NNYWY DYWOKRN X L(DI'ON W N7NNNN 1Y) 1WNRn DN 7w nxpn DY DX 0'Yan
7WYN-NN NI ITD NNTANN ,NIMIVIINA .NAIDNN DX DN /2°AY 1Y NN X'N 099 DY 79 NN '
NINIVIRM NPT MY NIRINNAN DNJINN [NARD 12'RIN DY 7ITA 12 [IYXRIN J2'RD DX [I[77'7D 12 1R
-MN 72 D 0'RTINM L2101 Y0 Q DMARN OIX DXN P1TA7 DIPN2 TWKRD ,N1I0RIM NN 727 D'RNN

L' M 0'fInuItRn

.N2N MR 7Y NI00IAN AT 7702 NIAXIND NIRXIND NN
O. Ben-Eliezer, Testing local properties of arrays, Proc. 10th Innovations in Theoretical
Computer Science (ITCS), 2019, 11:1--11:20.

N9I¥1 NN N'DA-'X NP'TA 'N'YA NnY

g 17192 NIY'SIN IT P09 NINXINNA NIXRXINN

NNIIDNNAN NIAY 1AV 'VAL |9IXKALL,NNIDN 7w TIND 2NN NIVY D'XNN nimipn Nidn 1y 2700 DNMIATRD

.P M'9'¥90 N9I¥1 N'1AN N'7N 'R 7W NADNN — IT) NNX N1IDN] T¢7NN1 NYd J7n'09IK 'K NN L1770



7901 ,NI'YVINTY 7 WTN TUNID DA'NN KD 0'NDIN 1IRY DIINNNN D'MONN ,MI01ANIPN VNN
N5V TIYA 122 PN IR TN DIVY L (unique signed partition number) n'TIN*N Nanionn N7I7NN
[N s() X2 N0V (stitching number) 779NN 1901 ,17W ANI* NVIYD N'¥XNILINTMY "TNT Jaion DT
(17750 7220 *72) N2 NYYVINAD NI LXK NIXPA MIX A'X¥]1,72007 NI 77 IR NP NIY7N 0YN NIRXIN
DR NIRAIT 7Y '7112'0 QOIRN 77TIA XIN N'9NN 190N Lk "“mropnin 1wn 197 y'om 1 *7n'mn 1vin
NI M .a < i < b Ny 7" apw ar ovp i € [k] "R D% ) ,0'71Y DNDIYY ,NYVINTOD] DAY

-X'70 INNNN DoNN 7w '01D M 1w T¥n .3 IX 2 1'0 k NIRA NiMann 72 vynd 7w n1'anin 1son

1
1——
J7R NIRNIN MY 1N LQ (n k_s(")) 12'N YATIN NIN'ATN 190N ,7T NYAN 727 ' nkn 17w 209X

1
k& 1kn nimann 75 vvnd Ty Q (nl_ﬁ) 7y IMNNN Donn 7apnn

.N2N NN 7V niooian Nt ,7'7n1 NIAXIMN NIRXINN N

O. Ben-Eliezer, C. Canonne, Improved bounds for testing forbidden order patterns,
Proc. 29th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2018, 2093--2112.

D"ITO 0'1ANA NIMIN NIDN N7 W PN

.0 TN'N-2101 DY TAM-TN DIYNA NIMIPN NRIDN N7 TAa 710y L,(6-7 0'p19) nThin 7w jNNRN 77N
["OXY7 N1 DX N'Ipn-k nawn mdn LA: [n]¢ - X nnixnn axpao - £ ot un fn-d 1n
NIMIVIRM ,NNAIT? .k IXKQ DNIOK (D'9IX) IX) DXAFIY D'DIYA-NN 7¢ NNSWN T 7Y X' 91X NNIX

DX DT X7 N0 XD NTOY (11D ,Nizn-2 Mdn X (NIF 012 DTAMA DA ,NWYnY71) TA'n-TN

.a > b 1w (a,b) MiIxnn 2y YN NN A7'ON NIR XD DR I

N9 NIMIVIAIM ,7VUN7 D NMlEA [N NIRIDNN NPT DIND 7Y NND021 NI NNZNIN NRDNNA DAY
NNPN L7 9IXA ;NN NITND L9 0T Nfipn-4 IX -3 X' D'0RoT Ny Nimipn-2 [0 y'wst
N2 NP NMIEEN-2 XD DMATM-NN nrmipn-(k + 1) [0 k-0 n'oajporTa NN T %Y nnmaimn

o k ay nimipnm-k [0 ,navnimn 'R NR2IYN N7 1M N 0Yr0R 79X 0inna

NIN' NYXNXA ,90112 . IXI'7-NN NIN'AT 19001 NP TA7 NN NMIEnn NRDNN 73 D AR L,AT 7N
, 7272 TNX WN-NN D791 (NIMIEnn 1NTAN2) NIIOKN NNOYWAN 12 MNn 7w NI 'ayn N1u1aniy

191¥90 271V W NN NN R W Nadnn 11y 0avim 0Msivn 0rnon



NIMIVIRINM NNTO 7W 71TA 1901 N'XY7 N2NA NNNIALL,NZITA DRIYA DY7'91N190 NIND L'UINDN NN

JIM09TR K77 17'98 ,ninaT 0 (log n) NIy¥nNa NR'¥N? NI7RI NDNX

7900 DIPWUNN 7w ,0"'0DTR-NIN 17X7 DT DY21'Y NI7'W 7'wOn7 [N K7 ,"2'09TRN NpPnn 1y
wishful thinking nw 7y ooian oNMAYRN ,NRT DIFNA .R'0N 7w iy 75 11 O(logn) 7w
(k-1 1) nx¥n YD TPONY D' TAYIAN DNAK AIT DDINA NN DNAN 7Y [V 1901 NNAITA N0

78 DMK AW ToN NNA k — 2 NINa yoIn wiona ndwnnl L (1,2, .., k) 7w MyoN yoin v

.O'N2N DMINRNN 7Y NIOOIAN AT 7702 NIAXINN NIXXIND NN
- O. Ben-Eliezer, C. Canonne, S. Letzter, E. Waingarten, Finding monotone patterns in
sublinear time, Proc. 60th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), 2019, 1457—1482.

- O. Ben-Eliezer, S. Letzter, E. Waingarten, Optimal adaptive detection of monotone

patterns.

NIMIVNRIN X7 NINAN

.5 {192 ny'om IT NO9A NNXRINNN NIXRXINN

MON LYND DN D™A'VDTN X7 D'ANMIIAZK NIAYY NINAN DY D NIk [109] renivi n'n 7w nIRXINN

1
NINAN NN ,NNToNN NINpN NINaT 0 (nl'i) TRV NPT NN T NNAN 7DW TIva L0179 . NWIN

2
7w N'77530 N1IANN DX NMIYNWN 15w 1T NTha .NinaT () (nl_m) NIN97 NIYAIT "2'09TR X70 NMj7naw

-7 ,NMPN NIN'ATA '71,7nnn DONN NX LYN IOYNAN DNNATR NN ,N'WKRY LQ'UDTR-NN nypnn

1
.0'X'71 D'91¥Y D'7INVI'R 7Y NIN'AT DA ,NIMPA NIMAT TX? ,2%0n 0T DNNIAR .0 (nl_ﬁ)

1
TN DT DON .NIM'VDTX X7 NINAT (nl_ﬁ) NIYAITA NINAN NIMYR D IR VIR k 727 v T¥n

190n ,k 7INA NINANN 727 LYNOW 7wUNn%? ANNIL,N2NA 770 12'D D'NDIM RY INNNN DONN ,NWynY
DM X7 ,N'0P9ON L,k INA NIMann D% vyvnd nin .Q (nl_ﬁ) 11'N WATIN NIM'UOTR-K7N NINaTN
e, 1 <£ < k—1%"%D 0K ,900 IN'RIPXR NNATA N'MIVAWNA DAY D'V TR-X? D'ANMIATR
11 2w ANIMON N7RWN 7¢ WN 7700 2V 2rna nava pal ,ninaT 0 (nl_%) NYITY k NIXa n1an

JAMOOTR-K7N MPNn? Nvann I'vnivi



X7 DNMAZN T 7Y NP TA7 NN NIMIvNRIM NNANY Tva nmnnwe Y = (kk—1,...,1)
AWK NINAT Q(V/n) NINSY NIYAIT NIMIVIIN [I'RY NINANA 75 ,NINAT YW MNMAI7*719 190N DY 'V9TR
DNNIAZR W' LIT NDAN 1Y ,q0m . = (1,3,2) 7y 21Th 0YNnd 0T 1901 'V TN 11'K DNNIYRN

JAVOTR-K7N MPNN NNIYT7 IN'XIDOPKR NI9'Y ,NI7d — 1272 MNNaI7™I9 17w NINATN 190NV '09TN
JINIMD NIYRY MY NI7YIN MMXAN INIK2

1901 DY 'A'UOTR DNMIIAYTKR NIYXNN] NP'TA7 NINYI 7 NYAN 72 DRN 209 TR Mpnn .1
?nnpn 7w 172 mnMaeIe

NIYITIN NIV TR-K7N NIN'ATN 19010 7V T N'IANN 112N Y'OwN T¥D '09TR-K70 ngnn .2
-n |OP NT 90N NIAWYY ,NINIVAIM X7 7T NIAN 7Y '9101'K 190N W' DX 77 7W YoIN NX'¥NY

?0(n0.99)

,MIYNIN NNIN9N N7RYN .2'0DTN NN NN [Nl "A'VOTRN NN [N L NIRXIN 190N a'X) N7 ,7'7n:
|9IX2 D'NIS X NIYN NNINSN N7RYUN DX .TINN NYpPZ NK11D K'n J7'00 ARIT2AR] NI'YOTRY? NYaNN

.(IXI772 DNID 1R WD DP7N NR) PN

NniMionm niflan

.3-4 D'{7792 NIY'OIN IT D709 NNXINNA NIRXINN

NP9 X7 DNNAR 0, = (1,2, ..., k) n'vnmn nan?y nixkn [109] ronivi n' 7w nIRXINN
,ANTIY 19D 21T N'Y2aQ NAIDIN NMMNNAIY7I90 NI7NN 'n nRYUN N7RY) .(logn)o("z) NINAT 1900 72v2
(A" 7¢ DNMIIATRN AMOTR-RN Y (E)((logn)llogz kJ)-I 1'09TRN M7 B(logn) N1'n nawnN
,k IN2 11D Nan Kixn? 1T NMIvIRIM NINAN 7w NN yana nkan nINARN 7V 002NN 1'9NIvI
N7NNNN NTI7IY 2 — Y7 nnnaw £,k — £ 0N NI NNYP NINAN MY D'YOIN Ki¥n'? 7'o0n
XIN IT N7NNN DT 7w Anlm 1L,INKD YoInn 7w DIron NTiRan Niaa )Y N7u2 X' Doinn TR 7w
12'07I77 [91IXA NINIVIAINM NINAN KIX¥AY? [N ,IT N9 NN NIYXANA INKD YOINN 7w DI'oN NTIZ1 NNX

.om'xnn "nann" Y ntan T

X 7wn7 1Ix7) "0IXD IX N1AN" 2101 112N [I'9X D'NDIN XK ,'DTR-N7N NN 7"I3n DoNn NX 19W7 '
N71Ta nd ,ann npna (1,2, ..., k) n1ann nHn-kn nipin praw nnTo 1w ([133] ko 7w 190on
12NN MPNRN 7Y N'VIVR N7Y9N ;'0I9'0 "D'7NN 7'9N%" INIX *7¥2 DN N1IVIIMN NANN 'YOINN
.92 (1,2, ..., k) woim 7w 0'oayn 2 0MUSIND D'PNNY 0 T TR k 7va ro19'0 Myy 71ons” naxr
7'919 NX 1wy N1 ,nmaT 0(logn) 7w Y790 DITWN NIYXNNAY RN N'TIINN N'MMNNIATRN NINAXN

JDINIT 7Y viap 190n WA L1 770 DYV 1Y ,NYPITINRD 0'02aW L, [DI 3k /2 TV 7TIaa vy Yun



N2 X'N DTN 7W DT 7702 NMIynwnn NR0N0 NNNNN .NARY NIIXA DNITO 0'o7MAIR "axmy" nn'xn
DY 0'97127 N"M712) N'TY T 7V YXIAN A7 12T ,N'Yyn .0MI1T0 D'URMAINA NONINN NIMY7IA N'MYn
112V 'TNN 12201 VBSYNI WNNWNYTI N'DINYG D'WATI 1IN LIT 0127 0112 .7 [DINA NITANNYT NN

177N-20 9a-nn 0vpR LMD reon 7ma qaa o2 D ok k L"nix Mt Ny oy 0'tp'7n-10 0o
0112l ,'vNIND1IIM KIN D70 AT 722 |2 NYINN 9AN-NNY 1D ,?7N 702 D TR TR 7¢ IN1 190N DY ,NYIN

SMINN 91221 N1NA 7IMA X7 N1ann DNA NEFIXY M7 DR 9w 7700 190nn

NN MXNN 7V NI00IAN AT 77N NIAYINN NIXKYIND NN

N. Alon, O. Ben-Eliezer, E. Fischer, Testing hereditary properties of ordered graphs and
matrices, Proc. 58th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), 2017, 848--858.

D"MINY'7-NN D'MNNIATX Y PN
'"MNTO YT'NA NIIAN NX'YNY

(f: [n] » R nrxjz219) 'MYT0 YT'N2 NRIDN NP T2 N*'Yaa ioya (3-5 0'p19) NThin 7w awn 7'7na

D'M"'j? DX 7 7W YOI n'7'on 7" f NNT0 .wiap k Ywxo ,m: [k] - [k] n'x0IN1o yapa . n7 1 nTamn
70197 T 'yranan ,mn .n(j) < m(£) DX i DR f(ij) <flp)Dwl<i<ip < <ip<n
DN NPT 79 0ann NTIRIN MNTO YT T 7W YOIn NX'YN 7w n'van DX Npn [108, 109] YT

€ PNINN VNI 21 k D N LT NIXY L' 7w yoim non R NIdNN 7w R NNENIn N'Yan  N'o'Ys0

JITTX-TN AN'AY DY NIRIDN NPT 'NNIAYNY Tpnnal ,0'viap DY

DINN ,(time series analysis) NNy NNTO 7w NT*'7axn nyan 7"10 N'van N7 ANk N'Yaon n'¥a'oinn
,90112 177122 DIXY KIN D21 DNZNAY 'MNTO YT NIF7A172 NINAN DR X' NFTDINND NN'wNn 1Y
NI NDINRD N7IVR NTTON NN NP1 1IND ,NINTOA NINNK NIFOXY7? NI'YA DY D'RITN DWR IT N'yaY
N'YAN DRI X' — NIMI0NRIM NP'1a7 '0I7n? 2ipw ;7 = (2,1) 12 ,n'wan 7¢ N uiyon npnn

(3.1 79 1x1) 171D NMATAN NRPRDN NPT DINNA NI DRI

N'val D NItnnn LT N7ON 'R NPT Yana niy'non NIRXIN 1901 0'Nm ronivi n' ,[109] oonxna
.DNMNAZRN Y NIMOSTRN DTN NTNIYAYA NI7N DI, T NNANN 7W NNINTA N1*yn NIV NN It

P17 =(1,2,..,k) nIrnonmn niann 'a nTon [2'0 NIFTNN NIRYINN L2100 WYzna



DT TR @ 7Y MYINN 91an-NN ,N2I0 NNANoNa ,F N750 'R PINN-€ 1'NY 913 727w 3 ,q 'wav

,[131] 'Tno 7w niM7mn Nn% 7w npTn nonan nyan andinn .F NN JIoX Qa-NN 7' 9121 D'RIPR
.7TNN NIM71270 DA77 RPN

NINXIN NN2INY NI N72IPNRN NU'YWN NN, NIMZI0 DM NTYa NINdIM NINAY ,NN0N NN win'y
NTN D IR [9] MNP NNNIRA NIRYIN N2V N0 )27 W .qI9¥N 771N 0'972 7w NN NPT N7
17X .NIMAT 7Y YIAZ 190N NIYXARA NNIX PITA7 17107 ,N'0ON* TN |21 717 NIDN 7¢ NiM7ian
D'9722 N'NYNIN NPN 22w 1D .[12] NI'sio1'k NINdWNT N"wINN NNoNN NN DX 17790 X1'owi

D'97A 'MN 7¥ N'DI01'X IX N'OI0 NNOWN *T' 7y [I'OX7 NINY (D' TP T7 7w N10N NNN NIA0 NN ,N17))

.0'9721 NN ]'1|7"I'3.'7 AWK NXAN NY7700 IRXINN DX 0'7'on 11X ,0"IOX D"YYIN

JINAT 7¢ Yia7 19002 N7'T72 120 0TI X7 0'9122 N'nwin Nadn 7 :([12]) vowun

Y11 WO LI7R T 7V NDIN NITIMYNE NNIYA 1T07 NIR'wN K77 NIMKI NIXNLVN 1Ay N7y nnon nnY
(191X X7UT IX7) ¥V N NITNY -1 NNIY s 7w INNY7 o'on'nn X ,NT Wwizna .2007 mwa [8]
NXM0NN 7U AT NIYIN NXI0NAN-NNA 1TON TWKRD ,NNIPNN NXN0NN W s X t 1TON N¥0N-NN N2
IT NIMTI20 NNYY (1D .NIMIKI NIXN0N A 27'Y NRNM Dm0 nn 1040 [8Ja 'monn 0 .nnipnn
[NAY NIX0N7 NITO NNON NN7 NNIYXARA N'DINT [NIY DIYYAN NN7VIN ,INKRNAN INIKA ,NYa0n NITo
MUN'oN NMPN7 NNJINNIL,MILVA'0 NIND KIN NT NN ,0'913] A¥NY7 NNITA) AUWN NITIMYNE NNIYA 1T

(N1 o'xnn X7 [8] 11INn

,AYYNY .7'97 NIdTIN NYYWNN 7w N'770m No0NA NNDIN X' DTN 7Y [IWRIN 2702 N'TDINN NRXINN
N97X '72 7un NNITO NIXMVNAYI,D'WOR NINWR 'WAY wn NI 202 DITO 09117 DA N9PN ANdINN

7' NM0N'0 NYWNIT NI'R IT MYV NNDIN ,IND MXINY NINTIZN NIRXINNAN N1IvA Vi 7T

NIN" DA 571,000 N7 NN"7NA YIA7 N'AD7X 7yN NIXM0A IX 0'97] 7¢ N'NYIIN N1IDN 75 109WUn

.TNXD NINITO-X'7I NINITO NIADN7 N2I21 IT N0 .NINAT 7¥ viaj7 19012 Nj7' 127

yIap 77112 N1an nn'knn "NiM%in nndo” nta neAIT 775 7T NNon NN NNdIN .N'vnnn N'NYN
072N DX NNYY N1IY AT 2N ,NIPNN Qa7 Nvawn [MT XD NIYRIN DTN DRDD "Ny DY7nn
[2M2 ,NIMIXT X' NIYUN NINYR 7 TIRA [V 190N NNoNI NDO0IN NIYXANA NNd0N 7W NID17 Ninn

SN 9122 DA NNYZ L'0NO0N 1A NIRTYT NIY N0 NYDIN 7w N

Mjpna .[131] niM7ia0 NNd0o M2 'TIN0 7Y NIM7I27N Nn7a Nwnnwn NIk N'0'oan NoNn NnY

NI'X 1T NND0 17'9X ,NRT DY TN' .ANIF NDAI0N N0 NIX W' ,NNYIMN NNoNn Nn%? 7w NIk Jalonn



X7 ,21T0 YT'™ 11QY DMA'VRPOR NN NPT MNNINTR X7 TYD NFNV'Y N1aN 0017 0'0IN 1IN L,IT NTNA
,0'9712 NNPN NPT I "nMon'on nionn” NNawa 7NN, NIFVANTY NIXXIN 19002 |IT) AT .UN'o
17'22 0721 ,'MTO VTN NINAN NX'YNA NIFYA7 0Y7''UDIN DIINNN D'A0N NNDINE D'ANMIATR IR'YN T
N9' MIVI'ANIRZ NIAN IT DTN NIITIN NIYAN 727 .AIT0 VTN NiMIpn Nifva NN97 0'WTN 0''0'01 07D
D'V NIZ D'NIM 7Y DNIN'DY 1N [KD NIAXINN NIV'YAN 770 .0'WaN [NN97 NN MANY L|"Mynl

.onxywIh? 0Myn ,0'wTN

N'77) DTION 0'9721 NIDN NPT (I L|IWRIN 2702 .0'770 nWI7WY7 0'72InnN 0719 nyaw IT nTthY
N{7*T22 PO 'w'7wn 7700 . MNT0 YT 7W Nian NNdN N1 [T awn 2700 (DT TN 2 non'o
DT L,MNNNTRN [NNON ,N'WAT7 7700 Yidin IR DY) A1 ,07700Nn TNX 7227 .nimipn nNIimo Nindn
JMI0rMnipn vann

0o yT'n .NNIdNN NZ' T2 DINN2 D'VITIVON NNTANNI 0NN DX NN NRIIPD D N1 7N XN

1.4 701 yoin

D'"AITO DS NNDN N' 1A [ JIYKY p'm

2 17192 NIY'SIN IT 092 NINXINNA NIXRXINN

NP 7¢ 2N AN Iy (0 0MNNIAYR? NI7'2am NINay) NNon NN NN ,NThn 7w [IYXIN 77N
NNRNN [I'9XA 70V NNDNN NPT DINNA NITIAY 7W 121 190N .NM0N'o NIX X77 ,NI¥N0NI 0'911]
['2 NMLVN'O MY DNAY ,0NITO X7 0'9A 1Y (NINAT 7w YIAR 190n1 795 0Ta) N7 NiprTan
0'9712 7un? ,MN1'w7 N1 'MY72a1 NN NTO W OFTRTRY? 12 N7na 179'0 X7 19X NITIAY ,NRT DY .0 TPTE0
TNX T¥A DT TR0 AWUXRD L NINYR 'Y [0 Y702 DITO OFTTY 1T 0'91A) [A¥"'7 [NY) NIRIMNA IX DNITO

.(mmnn |7O|7'E') nax'n nTmy? NI I'2 NYRIL,NITIMYN MO0N NKX 1Y TX2 ,NNIYN 50N NKX D'ax'n

.G: (['21]) - {0,1} nrxjpa1o T 2y DAXI'M D'9NA 1AW ,9/9XN 7TING NIIDI AT P7192 NNKINNN NIKYIND 7D

"N17n npN" a7 NRNIN NRDNN 72 IR D NN [83] NonTia ) MT7a 7w Niznn kN

DA IX1) NINAT 7¥ YIAp 19010 NIYXNANA PITA7 [N ,71M 07w 912 DN 7w 2750 IR NIvRAx-k 120 ,0'911]
F "nmiox" nnownn F nwin 931 NN N0 'R 7w MpNn D Inin [7] ol 'yra7anp w17 .([86]
F 110 NNOYN 72 112V NINAT 7Y YIA7 190N N TA7 X' DA NINYI (DFTRTRN |2 1T07 Nia'wn X79)
7w 0'91%7 nwIT'N NNonn NNY 7w n7700 K'Y, nMwimn 01000 NA7 ,M101anip 0OYNN NVl DNNXIN

a90n 0" € > 09971 7"10 F n'a1o nnown 737 D nwiv nwimn nonn nnY .[5, 131] 'Tnoi n'tn



nNNTN

NN N1ANY? NI7'Y' NI0'Y NIN'DY NIXN DX NN7VN "N [T'YA NOTINNI YTAN "MINN VTN NIXXI9ONN
xwil zin (Property Testing) n'nam nnnn N1 7w DINNN .N722M Y117 NWAn TUKXD 01911 ,YTN
NI7> NIOTX NINT7 NINYY 0'MY7YW) yT'Nnn NR0R NINATA An? N1 X7 nnl N nn — 2'manr
T2V ,0MY Wnni DNYYI 197 DINNN 7Y ITI0" T8N .(N9XIN YT'NY NNXRNIMN MY NN1Y 178D
NNTPNN 792 [0 NIrMIyAYn 0T NIXNsn 01N KinL[83] (N1 onTia v Ta o [122] mor 791N
NIMNMRR NINTPNN 7w [N L,DINNN 7w (NMA71910 IX NN2A7K ,NNI011ANIR) N'ONNNN NN
,NIDN NPT KW 0770 NNIENA 190n7 .N'0nnNnn NINTPNNN 7V 02 DN DANoNY  Nin'wan
.[80, 81, 119, 120] x1

A¥IMN LYVTN DIAT? D7D 1 T2 1NN NIXNA XD NMNAT NIRIDN NP T2 N'oI9'0N N'yan ,N'7nIo
MIXNN XN7'RY NN NNAT WX L(0WIT DNY) Y nnont X oinnn 172 i X7 f: X = Y nrypiod
NVIT P Nnion NN NNV f DRN L,NAI0 NINAN0NA L,LV'7NNY X' NNLVAN .INTNAY7 X 1w f(x)
DI'PN NPINN-€ XN NP9 D DK X L€ > 0 7NNNn 10N19 11 .IT NN DY771 NRIN IR ,WURIN
NTTNI NI7'Y' .NIDNN DX DUPNY NN 7Y D109 €| X| NINSY7 1Ay N'¥z1oN DY R NIRYY ' DX N1DNN
NNPN NPT MNNIAR L7700 .0nRRN 7w 97100 D¥Nn T Da 0'nysi ,NimaTn 190N 795 T
NP1 I'MIAIYNILLTINAN0N NIDNA DNNIATRN 27 L1710 07N DX D'RIIP DI'RIL,DMINIYZ-NN DD

L00'I'NVT |9IKA N7 qX ,NA1I0 NINANOoNA

IT NY9IN .N'ON' "UN'0 VTN TWKRD NINYY MNIF D'OIYD NIFY D'0N NRDN NPT MDA L' 91K
IX N'9INVIRN [1AD) NIMATONN 7W NIMVNA'0 NN L,NNAIT? .NRIDN NP'TA 7 DMINN NN (1N NNOX)
NIT — NI79NNN W "Yax¥Nn nyran” T 7Y KM DIK DNTAMN DRDNN NIR 2T N (DITNRN 7nnn
MNIIATR NI'Y 79 N'oN' ,N1YINA NIANYT 7200 0T [I'9X .NI7ONNN 7W NnNaIvon 7w nnaivoan
NX¥0N T 7Y DANIM 0'97A 11 ,"q19x"n TN v191) 091 [135] nimvn'o NIATONN NNPN NPT
ITO [NAY NIIDN NIAY 711 X VYND NYNINN NNIDN NPT 'ANNIAZR N2 NITENNN N TV ,(N11dY
NPNYNI NN (D'VIRNIIR) NNIMYI NIMOVA'0 ,NINAAZK NNIDN NP TA NIYYAY .MYN 'R D TR0

A7 191K N1an? "nir NIvIwe"> NI05N1 WNI' N2 NMoNR'o Ni7va nirval,[129]

YT IX ,NI'MY NINTO ,00{70 7wn?) 'MNTO YT N ,"0N'0 X7 YT'N NN NPT NI'YYAY ,NRT NNy
DPN7 NIM7721 NIFTR NIXXIN .N2IN2 N'O'R NINTENNN N2 TAMN NIMRYI DIYRast nnmn L (aizm
N{P'T2 |12 ,NI'9'¥90 NNITO NI'VIA N TZANN NMZNNN NINTENNN N1, N'oN' NIN'T N'"VN'O |'K DN

NN NN'YRIENNMy? IR MR NI'Y?151 NifivNm



TR NN k=117 v IR 0 R ,0((logn)log2 k) i (ytmin 7w 7omony fan
,NIMI0NRIM X7 NINANY 0209 TR X7 D'NNIATR 112V DAINNN D'OoN D'NDIN X 90112 .N1ANN
MY 1N VTN JINN D'RIPR NARAT? ARIYNL 1780 DMNNIRATR DA'YAY 1I9'WN D D'RINN

JIMaNN 7w 07Nmn AN iy

NIXI71 D' ,NT YR .N1AIM YT'Na NIMIENR NI'Y2] 0ROy IR ,NThn 7¢ 'w'win np'7na
N7 NNR'RNN T NNTAN "NNIOXR" NIVR NIDIXT NIMAN 7Y QOIX T 7V NIRNYT TWOKX DX N'In
NN 72 D DX N'TOINN ARYINND .0MITO 012N NIIDNN NPT DINNA NPNIY NI'Yann
N7 12N DNMAYR .NIMAT W MKI'7-NN 190N NIYXARA DR TA7 NN AITO YT NiMmipnn
MN7NY NI'YYA 190N 112V *70'09IR 11'N DNMIATRN VTN NI D977 *“InT 02N DAIT 7790
[12D NIIDN D ARINN NIYRIN ARXINN 'NIT ,NIAA TA'NA . TAM-TN YTNN QUKD TNIMA ,Naya
JDINAT 7Y XIY-NN 190N NIYYNXRA NP TA7 NN NIMY7ITIN-NN IR DNy

MM NNETO NN W NIANN DX NIYOXRNN NNI01anie "'y nn?" 0'nDm X ,q0n1
N7XY 7Y D1IY 11X )02 .NINAN WID'N NI'YYA 1Ay 7' NP Ta DNMIIYR 117 N D'ynnuni

1780 07y 0'anMIYR 7w o7 Ywxa ,2001-2 ntan e T 7y R



a1a)

7'on7 |1 nNn :nxXan n'7xwa poy (Property Testing) n'mam nnpn n'ma 7w Apnnn DINN
AYIN ,NNNNRD DIYN YNNI DMWY AT YTNY? NINAT 7Y [U 190N NIYXAK] |IN1 YT INN
NN W' yTN7Y nNInn NNN RYIN 71Tan 2N ,NRT OY .0INN2 NIMIVAYNI NI )T NIXNS
NMLN'O XN NITIN NWIANY IR L('NY?D NIR79NNN 772 yTMn TWKRD ,NNaIT?) N'on' VIYOS

2TO |'NY NINYINY NIIDNA L1712 12N ,70Y 0'913] NP N7 T2 XY 1{7Nnn ,NNaT?) nnina

(9722 DIwN DTRTEN 2 NN

JN'ON' 201N N1aNn 7y 11'D YT [NAY N'NATA NIRIDN NPT NI'YYA (1N 0701y DX IT NTha
NTIAY NIV'Y NIN'S7 072N N1ANY ,NIY'N5N NIMNI01'2ANIR NIYSIN 1901 0'A'¥N 11X ,019]
NN PNNN NINTENNT IX [NN9Y 7'2m 17X NIV'YA UIN'yn .NI"NaN NI'Ya 17NN NIYTN

.NT DINN NI'TINN NIZRYNN

,NI72) 0MITO 0'9132 NN NPT D'POIY 1R L|IWRIN NP7N2 0PN nwI7W? Np2inn 1T nTh
72U NTMYAIN NIDN 7D D RN RDYIL IR 7Y DYIT ARXIN L(DTRTEN 7V N1am 1T0 DN 0'oNA
NIYXNXA NP'TA7 NINI ,NIYNYN 10N DT TN |2 1TOoN 0N 0972 ,1N175 ,0M1T0 X7 0'9
NYaInN NM0N'oN 72y MIynwn |9IX1 NdNNOoN NIYLVN NNJIN ,NRT DY .NINAT 7w yiap 190n
D'I0N N12AN2 0TION DN TP TRY 0'912 112V NN'RNA NI'RIL,DNITO DI'R D' TRTRZNY NNINNN
[ ,0"NIYNYN 2 NITMYNIENNIYA "MImy ITo TTX 1T 9720 %07 INIY NN XNAIrT?)
NNIT N2 AXRYIN NDINY (N2 oxN 2007-2 178w 1w 17X .(D'7017'9 mip™m Dax'n Dnv
'0012N 0'75 0'NNSN D N2 L,AI'NA IT NYRY 7V DAY IR .NRIMN Ay 797 nonn ire

.0NITO 0'1AN7 D'M'RNNN L, TINO-NIM7IN

7¢ NOTO [NINA .MITO YT NIF7A172 NINAN NXR'YN] 0701V IR ,NTNN 7Y Iwn np7na

7w T'N' PNIY RIXNT7 N1 TYO ,NNY0N 1 T0 NYAN 7w 02N 0T O'W9IN N'7'ONN DY'YNN DM90N
NIR'YN7 N1II'N IN1IQNY QNI [*ayn D102 ANl N1an IT n'Ya? ' 1anon ?ni7'ya 1Ton Nan
NN72VINY NNIND N7XY DMNIS 13X ,NMI0IAANIFZN N'YAN 17NN NIYXNXKA .07 D'NNNNTR
NN 7"10 N'wan IR DRI 0NN 11X 90112 7T TON9Y T L 'yr A na 'y nINnKY
750N ,Y'NoN 91X .1A'VOTR-X7N1 A'VOTRN DIPNA NIIVIAIM NNTO NN NN NNANN A

;UNIN NMIYXIANY NIMATA 770 2y "ron?" 1yw) ruo TR X7 DNMNYR 1Y waTn NinaTn






TEL AVIV NU'ONQ']IN
UNIVERSITY Q2'AN'IN

DPMTN DYIND NOSPIN
AOPND D2 TN Wy
PoNnva vy avnnn yTnd v”hra

N3N NMHNTO NPYAD DXPNN DINNIIIONR

7991919995 9102117 ANIN NYAPY NMIYIITIN PIND YIN AT NN

N

STYIIN 12 Y

PONR D) 9999 NN

2020 »ny



	Introduction
	Ordered Graphs: Regularity and Removal
	Property Testing Algorithms for Sequential Pattern Detection
	Monotone Patterns
	Non-Monotone Patterns

	Understanding Locality in Structured Property Testing
	Testing Local Properties: Follow the Boundary
	Testing Meets Pattern Matching: the Modification Lemma

	Notation

	I Ordered Graphs: Regularity and Removal
	Removal Lemma for Ordered Graphs and Matrices
	Introduction
	Outline
	Finding a Regularity Scheme
	Proving a Finite Removal Lemma

	Preliminaries and Definitions
	Technical Aids
	A Quantitative Ramsey-type Theorem
	Multipartitions and Rounding

	A Regularity Scheme for Ordered Graphs
	The Approximating Partition Framework
	The Core Lemmas
	The Finite Case for Graphs
	Representing Subsets
	The Graph of the Representatives and its Coloring
	Cleaning the Original Graph
	Proof of Main Theorem

	The Infinite Case
	Embeddability
	Adapting the Proof for Infinite Families
	Adapting the Proof for Matrices



	II Property Testing Algorithms for Sequential Pattern Detection
	Monotone Patterns: A Non-Adaptive ((logn)log2 k ) Algorithm
	Introduction
	Techniques
	Structural Result
	Rematching Procedure
	Growing Suffixes and Splittable Intervals
	Tree Descriptors
	The Structural Dichotomy Theorem
	Proof of Structural Dichotomy Theorem

	The Algorithm
	High-level Plan
	Proof of Lemma 3.20: An Algorithm for Growing Suffixes
	Proof of Lemma 3.21: An Algorithm for Splittable Intervals


	Monotone Patterns: An Adaptive O(logn) Algorithm
	Introduction
	Techniques

	Stronger Structural Dichotomy
	The Algorithm

	General Patterns: Stitching, Lower Bounds, and Hierarchies
	Introduction
	Previous Work
	Our Contributions
	Discussion and Open Problems

	Upper Bound
	Lower Bounds


	III Understanding Locality in Structured Property Testing
	Testing Local Properties: Follow the Boundaries
	Introduction
	Previous Results on Local Properties
	Our Results
	Proof Ideas and Techniques
	Other Related Work
	Discussion and Open Questions

	The Grid Structure
	Testing with Grid Queries
	Systems of Grids and Testing with Spherical Queries

	Testing Meets Pattern Matching: The Modification Lemma
	Introduction
	Modification Lemma
	Characterizations of the Deletion Number
	Tests for Pattern Freeness
	Discussion and Open Questions

	Conclusions
	Central Open Problems
	The Quest for Adaptivity
	Better Structural Understanding




