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Abstract

This thesis studies the connection between local and global colorability of graphs. A well
known result by Erdds states that there exist graphs with arbitrarily large girth and chro-
matic number. In particular, there exist graphs with arbitrarily large chromatic number,
in which every subgraph of small radius is 2-colorable.

It is shown that for any fixed ¢ > 3 and r, the maximum possible chromatic number of

a graph on n vertices in which every subgraph of radius at most r is ¢ colorable is © (n$>

(it is equal to ni up to a factor logarithmic in n).

The proof is based on a careful analysis of the local and global colorability of random
graphs, and implies, in particular, that a random n-vertex graph with the right edge
probability has typically a chromatic number as above and yet most balls of radius r in it

are 2-degenerate.
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Chapter 1

Introduction

1.1 Notation and Definitions

For a simple undirected graph G = (V, E) denote by d(u,v) the distance between the
vertices u,v € V. The degree of a vertex v € V| denoted by deg(v), is the number of its
neighbours in G. A subset V' C V' is independent if no edge of G has both of its endpoints
in V’. The chromatic number of G, denoted by x(G), is the minimal number of independent
subsets of V' whose union covers V. A graph is k-degenerate if the minimum degree of every
subgraph of it is at most k. In particular, a k-degenerate graph is k£ + 1-colorable. We will
work with random graphs G, ,, in the Erddés-Rényi model, where there are n labelled vertices
and each edge is included in the graph with probability p, independently of all other edges.
We say that a property of G holds with high probability (w.h.p.) if this property holds with
probability that tends to 1 as n tends to co. In this thesis we are only interested in graphs
with large chromatic number ¢. It will be therefore equivalent to say that a property holds
w.h.p. if its probability tends to 1 as ¢ tends to oo.
Consider the following definition of r-local colorability:

Definition 1.1. Let r be a positive integer. Let U, (v, G) be the ball with radius r around
v € Vin G (i.e. the induced subgraph on all vertices in V' whose distance from v is < r).
Let

(x:(G) = max x(Uy(v, G)) (1.1)

veV

denote the r-local chromatic number of G.

We also say that U,.(v,G) is the r-ball around v in G. Finally, we define the main
quantity discussed in this thesis.

Definition 1.2. For £ > ¢ > 2 and r > 0 let f.(¢,r) be the greatest integer n such that
every graph on n vertices whose r-local chromatic number is < ¢ is f-colorable.

In other words, f.(¢,r)+1 is the minimal number of vertices in a non-¢-colorable graph
in which every r-ball is c-colorable. Note that f., (¢,r) < f.,(¢,r) for ¢; > cs.

1



2 CHAPTER 1. INTRODUCTION

Definitions[1.1] and [1.2] appear explicitly in the paper of Bogdanov [5], but the quantity
fe(€,7) itself has been investigated well before (see Chapters [1.2] [§ for more details).
The main goal of this thesis is to estimate f.(¢,r) for fixed ¢, r as ¢ tends to oo. The

main result is an upper bound tight up to a polylogarithmic factor for f.(¢,r) for all fixed
c¢>3andr.

1.2 Background and our contribution

Fix an r > 0. Somewhat surprisingly, the gap between fo(¢,r) and f3(¢,r) might be much
bigger than the gap between f3(¢,r) and f.(¢,r) for any other fixed ¢ > 3. Here is a short
background on previous results regarding f.(¢,r) for fixed ¢ and r and large ¢ and our
contributions to these problems.

Known upper bounds for f.(¢,r) with fixed ¢, r, large ¢

Erdés [7] showed that for sufficiently large m there exists a graph G with m!'*/2* vertices,

that neither contains a cycle of length < k nor an independent set of size m. As an easy
consequence, G is not m'/?*-colorable. Put k = 2r + 1,¢ = m!/?* and note that G has
n = mM1/2k = 2R+l — 443 yertices and £y, (G) < 2 but is not ¢-colorable. Hence

fal,r) < 4473,

A better estimate follows from the results of Krivelevich in [11]. Indeed, Theorem 1 in his
paper implies that there exists an absolute positive constant ¢ so that

f2(0,7) < (cllog £)*" (1.2)

An upper bound for f3(¢,r) can be derived from another result by Erdés [§]. Erdés worked
with random graphs in the G, ,,, model, in which we consider random graphs with n vertices
and exactly m edges. He showed that with probability > 0.8 and for k& < O(n'/3) large
enough, G, i, is not &-colorable but every subgraph spanned by O(nk™3) vertices is
3-colorable.

It is easy to show that with high probability every r-ball in G, x, has O(k)" vertices
(later we prove and apply a similar result for graphs in the G, , model). Combining the
above results and taking k = 2¢log¢, n = O(k)"™* = O(Llog )" *3, it follows that with
positive probability the graph G, s, is not (-colorable but every r-ball (and in fact every

subgraph on O(nk™3) = O(k)" vertices) is 3-colorable. Hence there exists § > 0 such that:

fell,r) < fs(l,r) < (Bllog )" (1.3)

for large ¢, fixed » > 3 and for ¢ > 3.



1.3. THESIS STRUCTURE 3

Known lower bounds for f.(¢,r) with fixed ¢, r, large ¢

Bogdanov [5] showed that for all » > 0 and ¢ > ¢ > 2:

(C/e+1/2)(l/c+r/2+1)...(L/c+T/2+7T) C/e+r/2\""
(r+ 1)+t = ( r+1 ) (1.4)

fell;r) =
When ¢ and r are fixed, (1.4]) implies that f.(¢,r) = Q(¢™1).

A special case - f.(¢,1) for fixed c, large ¢

It is not difficult to prove that fo(¢,1) = ©(¢?log (), using the known fact that the Ramsey
number R(t,3) is O(t?/logt) (see [1], [10]). In Chapter [7] we extend this result to every
fixed ¢ > 2, showing that f.(¢,1) = ©(f*log () for any fixed ¢ > 2.

The main contribution

The main result in this thesis is an improved upper bound for f3(¢,r). We show that for
fixed r > 0:
fs(t,r) < (10¢1og £)™*! (1.5)

Fix r and ¢ > 3. By the result above (together with it follows that there exists a
constant 6 = 0(r, ¢) such that

(60) < fo(l,r) < f3(€,r) < (10¢log )" (1.6)
The last result determines, up to a logarithmic factor, the maximum possible chromatic
number M, ,.(n) of a graph on n vertices in which every r-ball is c-colorable:

1
nr+1

< M, (n) < bopnitt (1.7)

alogn

for suitable positive constants a, be,.
Note that for ¢ = 2 the best known estimates are weaker, namely it is only known that

/)

Q( < M,, < O(n'/0+D),

logn

1.3 Thesis Structure

The rest of the thesis is organized as follows:

e In Chapter 2] we present the basic approach of gradually revealing information on a
random graph. Two examples of this are given. Both will be useful in subsequent
chapters.



CHAPTER 1. INTRODUCTION

e In Chapter 3| we give an upper bound for f5(¢,r) for fixed r and large ¢ using the
random graph G, with n = (10¢log ()" and p = =(10¢log ¢)~". It is shown that
with high probability, all r-balls in the graph are 4-degenerate.

e In Chapter , the same upper bound is obtained for fy(¢,r). It is shown that most r-
balls in the above graph are 4-colorable. Deleting the center of every non-4-colorable
r-ball results in a graph with r-local chromatic number < 4 and chromatic number
> ( with positive probability.

e Chapter p|includes the proof of the main result of the thesis. It is shown that typically
most r-balls in the above graph are 2-degenerate. This proof is much harder than the
previous one. Again we delete the center of every non-2-degenerate r-ball to obtain
a graph with r-local chromatic number at most 3 and chromatic number > ¢ with
positive probability.

Note that the result in this chapter is stronger than those in the previous two chapters.
Still, we prefer to include all three as each of the results has its merits: indeed, to get
local 5 colorability it suffices to consider random graphs with no changes. Getting
local 4-colorability requires some modifications in the random graph, but the proof
is very short.

Getting local 3-colorability is significantly more complicated, and is proved by a
delicate exposure of the information about the edges of the random graph considered.

e In Chapter [0] we extend the result from Chapter [f to large values of c.
e In Chapter [7]it is shown that f.(¢,1) = ©(f?log{) for any fixed ¢ > 2.

e The final Chapter [§| contains some concluding remarks including a discussion of what
can be proved about the behaviour of f.(¢,r) for non-constant values of .



Chapter 2

Gradually Revealing the Random
Graph

In random graphs of the G, , model the edges can be examined (that is, accepted to
the graph or rejected from it) in any order. This fact can be used to reveal some of the
information regarding the graph, while preserving the randomness of other information.
Two examples of this basic approach are shown below, both will be used later in this paper.

2.1 Spanning tree with root

Let 7 > 0. This model first determines the vertices of U, (v,G) while also revealing a
spanning tree for this subgraph, and only then continues to reveal all other edges of the
graph.

Choose a root vertex v. Let L; = L;(v, G) denote the i-th level with respect to v in G
- that is, the set of all vertices of distance ¢ from v. Trivially, Ly(v,G) = {v}. Also define
Lgi = LSZ‘(’U, G) = U;‘:() Lj (U, G)

Assuming L; is already known and 7T is constructed up to the i-th level, reveal L;,; and
expand T as follows: for every u € V not in the tree, examine the possible edges from u to
L; one by one. Stop either when an examined edge from u to L; is accepted to the graph
(in this case, u € L;y1 and the accepted edge is added to the tree) or when all possible
edges from u to L; are rejected (here u ¢ L;y1). An easy induction shows that the newly
added vertices are exactly all vertices of L;;q.

Stop this process after L, is revealed. The remaining unexamined edges can later be
examined in any order. Let 7" = T'(v) be the spanning tree of U,(v,G) and let R = R(v) =
U.(v,G)\T(v) (i.e. R is the subgraph of U,.(v, G) whose edges are those of U,.(v, &) not in
T'(v)). Note that R only consists of unexamined (at this point) edges and rejected edges.

This model with R and T defined as above will be used in Chapters [3] and [4]

bt



6 CHAPTER 2. GRADUALLY REVEALING THE RANDOM GRAPH

2.2 Reveal vertices, then connect them

Let »r > 0 and v € V. This model consists of two phases: the creation phase determines
the vertices of U, (v, G) while the connection phase gradually reveals all edges of U, (v, G),
separating it to a spanning tree 7" and a subgraph R containing all other edges.

Creation phase This phase constructs L;,; given L; (starting at ¢ = 0 and ending at
i =r — 1) in the following manner: for every u ¢ L<;, flip a coin with probability p
a total of |L;| times or until the first "yes” answer, whichever comes first. In case of
"yes” add u to L;y;.

Connection phase Connect L; to L;_i, starting at ¢ = r and ending at ¢ = 1. The
connection of L; to L;_; consists of two steps:

Inner step Connect every couple of vertices in L; randomly and independently
with probability p.

Counting step For every u € L;, let k, < |L;_1| be the number of coin flips
taken until the first "yes” determined that v is in L; in the creation phase. Flip
the coin |L; 1| — k, more times. Let t, > 0 be the number of additional ”yes”
answers obtained.

Linkage step For every u € L;, reveal the neighbours of w in L; ;: choose a
vertex in L; 1 randomly. Connect it to v and add this edge to 7. Now choose
(randomly and indpendently) ¢, more vertices from L; 1, connect each of them
to v and add the resulting edges to R.

All other possible edges can be later examined in an arbitrary order. This model will be

used in Chapter [5



Chapter 3

4-Degeneracy and Upper Bound For
f5(l,r)

Theorem 3.1. Let r > 0. There ezists Ly = Lo(r) such that for every € > ly:
fs (€,7) < (10L1og £) (3.1)

Proof. Define d(¢) := 3¢log ¢. Our choice of a random graph for the proof is based on the
following proposition.

Proposition 3.2. Any random graph G, , with np = d({) satisfies w.h.p.
X (G) >/ (3.2)

Proof. By a standard first moment argument (see [6]), w.h.p. there is no independent set
of size (1 + 0(1))@ =(1+ 0(1))%%6 in G. Consequently,

\(G) = (1= o(1)) gy = (1 - 0(1))2ljg£ —(1- 0<1))32€11(§>gg€€ S0 (33)

p

for ¢ large enough. ]

Take the random graph G = (V, E) = G,,, with n = (10¢log ¢)"*! and p = -=(10¢log ¢)~".
G is not (-colorable with high probability since np = d(¢). We will show that w.h.p. every
r-ball in G is 4-degenerate (and hence 5-colorable).

Lemma 3.3. Fizr > 0 and let € > 0 be an arbitrary constant. The maximum degree of
a vertex in the random graph G, with n = (100log £)" ™ and p = (100log £)™" is w.h.p.
no more than (1 + €)d.

Proof. Let v € V. We have deg(v) ~ Bin(n — 1,p) and pu = Eldeg(v)] = d — p. We use
the following known Chernoff bound (see A.1.12 in [3]): For a binomial random variable
X with expectation p, and for all € > 0 (including € > 1):

7



8 CHAPTER 3. 4-DEGENERACY AND UPPER BOUND FOR f5(¢,r)

Noting that (1 + €)d > (1 + €)p, this bound in our case implies

€

Pr[deg(v) > (1 + €)d] <

‘ R 3.5
m = e (3.5)

Where 7, = e“(1 + ¢)~(179 < 1 is a positive constant. Therefore, the probability that there
exists a vertex with degree > (1 + €)d is no more than

n,yed—p :elogn+(d—p) logve _ e(l—l—o(l))(r—l—l) log £—(1+0(1)) log(1/~e)-3¢log ¢

3.6
< 2+o(D)r=(3+o(1) log(1/7)¢ o g (3.6)
Hence with high probability the maximum degree is < (1 + €)d. =

Lemma 3.4. Fiz r and let € > 0. Then with high probability all r-balls in G, (with n,p
as before) contain at most (1 + €)"d" vertices.

Proof. The max degree in the graph is w.h.p. < (1 4 €)d. In this case, an easy induction
shows that every i-ball in the graph has at most (1 + €)’d" vertices. Setting i = r gives the
desired result. 0

We are now ready to prove the main result of this chapter.

Theorem 3.5. Fiz r and let n = (10€log )™, p = %(10€log€)_r. Then with high
probability, every r-ball in G, is 4-degenerate.

To prove this, note that the probability that not every r-ball is 4-degenerate is no more
than

Pr[Jv : U.(v, G) not 4-degenerate and Yu € V : deg(u) < (1 + €)d]+
+Pr [Fu eV :deg(u) > (1+€)d] <
)

Pr [Elv : U,(v, G) not 4-degenerate

Vu eV :deg(u) < (1+ e)d} +o(1) <

n Pr [Ur(vo, () not 4-degenerate

Vu eV :deg(u) < (1+ e)d} +o(1)

Where vy € V' is an arbitrary vertex. It is therefore enough to show that for fixed r >
0,v € V and suitable € > 0:

l—00

lim n Pr {Ur(v, () not 4-degenerate

Yu eV :deg(u) < (1+ e)d] =0 (3.7)

For the rest of the proof, assume that the maximum degree of G is less than (1 + €)d. Fix
velV.

A non-4-degenerate r-ball contains a subgraph with average degree at least 5, hence it is
enough to show that with probability high enough, every subgraph S = (Vs, Fs) C U,.(v, G)
satisfies |Eg| < 5|Vs|/2.



Construct a spanning tree 7" with root v € V' for U, (v, G) in the spanning tree model
described in Section 2.11

Let S = (Vs, Es) C U,(v,G) be an induced subgraph and put s = |Vg|. Assume that
s > 6 (as every subgraph on < 6 vertices has minimal degree < 4).

The possible edges of S are either in T or rejected from the graph or not examined yet.
SNT is a forest and contains at most s — 1 edges. S\ T contains at most (;) unexamined
possible edges (all other edges are rejected). The probability that an unexamined edge is
accepted to the graph is no more than p. Note that here we ignore the conditioning on
the maximum degree. By the FKG Inequality (c.f., e.g., [3], Chapter 6) this conditioning
can only reduce the probability that we are bounding. Let X be the random variable that
counts the number of edges in S\ T. Then X is dominated by Bin ((;), p). That is, for a
random variable Y ~ Bin ((3),p) we have Pr(X > k) < Pr(Y > k) for every k. Hence

5 3s 3
Pr <|ES| > 73) < Pr <X > ?> < Pr (Y > ?‘9) (3.8)

The expectation of YV is pu = (;) p. An easy consequence on the Chernoff bound in (3.4))
implies that

JENYERS)
Pr(Y > (14 7)) < (1 +T> (3.9)

Putting 1 +7 = zﬁ we get

o (Y > 35) h (%)/ < (ps)™"2 (3.10)

Pick ¢ = 5. The number of induced subgraphs S C U, (u,G) on s vertices is

(|Ur(u, G)|) . <<1+e)’“dr> Ol + s~ = ¢ {@rss (3.11)

S S 9

The probability that U, (v, @) is not 4-degenerate is therefore no more than

[(1+e)d]” TS [(1+e)d]” r1S8

10d 10 s
S )
5=6 s=6

but ep(13¢)" = 3¢(134)=r(10d)r — 337 < 1/3 and the last expression is

[(1+e)d]” dt/1o
< Z pss/2<z (ps)™/* + Z 37° (3.13)
s=6 s=d1/1041

< d10(pd/10)% + 3—d1“° < d7207/10 4 3= (3.14)
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Since n = (10¢1log £)" < (4d)™™ < (4d)*", we conclude that

n Pr {Ur(v, () not 4-degenerate|Vu € V' : deg(u) < (1 + e)d} < (3.15)
47207710 1 3= () < O(1) a7/ 4 e e | 2 (3.16)

This proves (3.7) and completes the proof of the Theorem.
Theorem B.1] follows from [3.2] and the last Theorem. N



Chapter 4

Upper Bound For f4(¢,r)

Theorem 4.1. Let r > 0. There exists lo(r) such that for every { > ly:
fal,r) < (1001og £)" (4.1)

Proof. Once again we take the random graph G, with n = (10¢log £)"*, p = 2 (10¢log )~
and assume that the maximum degree in G is less than (1 +¢)d = 10d/9 (taking e = 1/9).

Let v € V and construct a spanning tree T'(v) for U,(v,G) as in Section 2.1} Let
R(v) = U.(v,G) \ T'(v) be the subgraph of all other edges of U,.(v,G). At this point, the
possible edges of R are either rejected or unexamined.

Suppose that R is 2-colorable. T'is a tree and is thus 2-colorable. The cartesian multiple
of a 2-coloring of T" and a 2-coloring of R is a valid 4-coloring of U,(v,G) =T U R.

To make R 2-colorable, it is enough to get rid of all cycles of odd length in it. This can
be done by deleting a vertex (or an edge) from each such cycle. The expected number of
cycles of length k in R(v) is no more than

((1 + e)’"dT) (k — 1)!pk < (1 + €)r*dkpk

k 2 2k

1 /10d\"™ /10d\™™ 1
< — (== - < 37k 4.2
= Qk( 9 ) ( 3 ) ST (42)

Consequently, the expected number of cycles (in particular, of odd cycles) in R(v) is
bounded by

1 , 1
3—21—1 < 4.3
2 2(2 + 1) 100 (4:3)

o0

=1

And so the probability that R(v) is not 2-colorable is less then 1/100.

Let G’ be a graph obtained from G by removing every v for which R(v) contains an
odd cycle (that is, the center of each r-ball for which R is not 2-colorable). Observe
that {x,(G') < 4. By (4.3), the expected number of vertices that need to be removed

to obtain G’ is less than {55. By Markov’s inequality, with probability at least 1/2 the

number of vertices to be removed is less than 5 (note that this computation is without

11



12 CHAPTER 4. UPPER BOUND FOR f4(¢,7)

the conditioning on the maximum degree, but by the FKG inequality the same estimate
holds also after this conditioning).

On the other side, w.h.p. there is no independent set of size (1 + 0(1))2107%(‘1) in G (as
was discussed in the proof of . Consequently there is no independent set of such size in
G’. We conclude that with probability > 1 — o(1), the chromatic number of G’ is at least

n—z 49d 49 - 3llogt

(1+ o(1)) 2@ — (1 O(1>)10010gd = (L=o(1)) 00logt " (44)

For ¢ large enough. Recall that these estimates are only true assuming the maximum
degree is < (1 + €)d, but this property holds with high probability.

Thus, the process described above generates with probability % —o(1) a graph G’ on

at most (10€1og ¢)"*! vertices which is not f-colorable, but with r-local chromatic number

< 4. This completes the proof. O



Chapter 5

2-Degeneracy And Upper bound For
f3(l,r)

The main result proved in this chapter is

Theorem 5.1. Let r > 0. There exists {y(r) such that for every £ > {y:
f3(6,7) < (10¢1og €)™ (5.1)
To prove this, we show the following.

Theorem 5.2. Let r > 0, v € V where G = G,, = (V,E), n = (10llog0)"™, p =
2(1001og €)~". Then U,(v,G) is 2-degenerate with probability at least 0.99 — o(1).

The rest of this chapter is designed as follows. First it is shown that Theorem [5.1
follows easily from Theorem [5.2] To prove we consider an algorithm that checks if
U, (v, G) is 2-degenerate while revealing it as in Section [2.2 The algorithm is shown to be
valid (that is, a "yes” answer implies that U, (v, G) is indeed 2-degenerate). The last part
of this chapter shows that a ”yes” answer is returned with probability > 0.99 — o(1).

To see why [5.1] follows from note that the expected number of non-2-degenerate
r-balls in Gy, is no more than (7g5 + o(1))n. Taking G = G, and deleting the centers of
all non-2-degenerate r-balls generates a graph G’ with ¢y, (G") < 3. Markov’s inequality
implies, as in Chapter [4] that with probability at least 1/2 — o(1) we do not delete more
than %n centres, thus y(G’) > ¢ holds with probability > % — 0(1). This completes the
proof of Theorem [5.1]

Now we prove Theorem [5.2] Let v € V. For the (more complicated) analysis of this
problem, we use the model of revealing U,.(v, G) presented in Section

We start with some definitions. First, recall the definition of a level with respect to a
vertex.

Definition 5.3. For a subgraph F' = (Vp, Er) C U, (v, G), let

Li(v,F) ={u € Vp :d(u,v) =i}

13



14 CHAPTER 5. 2-DEGENERACY AND UPPER BOUND FOR f5(¢,r)

denote the i-th level (with respect to v in F'). Moreover, define

Lsi(v, F) = UL (v, F) ; Le;(v, F) = UL (v, F)

Jj=i

Note that the distance d(u,v) here denotes distance in G, not in F.

The notation L; (without specifying v and F) refers to L;(v, G). The same holds for
Ls; = Ls;(v,G) and L<; = L<;(v,G). For convenience we will also sometimes use these
notations to describe the induced subgraph of F' on the relevant set of vertices.

The next definition presents a few special types of paths and cycles, to be used later
when describing and analyzing the algorithm.

Definition 5.4. Let F C U,(v,G).
e An i-path in F is a simple path in Ls;(v, F') whose endpoints belong to L;(v, F).
e An i-cycle in F' is a simple cycle in Ls;(v, F') with at least one vertex in L;(v, F).
e An i-horseshoe in F' is a path of the form
UWY . . . WEZ

where u,z € Li_1(v,F), k > 1, vw,wxgz € R and w;...wy is an i-path in F.
Specifically in the case k = 1 we also require u # z.

An i-sub-horseshoe in F' is a path of the form

wwy .. w2 (5.2)
where v/, 2" € L; (v, F), k > 1, v'wy,wxz’ € F and wy ... wy is included in the
interior of some i-horseshoe. Specifically in the case kK = 1 we also require u' # 2’.

Note that every ¢-horseshoe is also an i-sub-horseshoe, but the other direction is not
true in general. Here the interior of a path denotes the induced subpath on all vertices
except for the endpoints.

5.1 Algorithm for checking if U,.(v, &) is 2-degenerate

Consider the following algorithm to check if U,(v,G) is 2-degenerate. This algorithm
always returns "no” if the ball is not 2-degenerate, but is not assured to return ”yes” for
a 2-degenerate ball. We will show that the probability of a ”yes” answer is high enough,
implying that the r-ball is 2-degenerate with high enough probability.

Our algorithm (applied while revealing U, (v, G) as described in Section maintains
a subgraph F' which initially consists of all vertices of U,.(v, G) where the edges are not yet
revealed. It then gradually reveals information about the edges of U, (v, G) and adds these
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edges to F' while deleting vertices whose neighbours in F' are revealed but their degree is
at most 2. Some conditions might lead to a "no” answer returned by the algorithm, but if
it succeeds to delete all vertices of F', it returns ”yes”.

It can be seen as a pessimistic version of the naive approach of trying to remove vertices
of degree < 2 from the graph until all the vertices are removed (a ”yes” answer) or until
a subgraph with minimum degree > 3 is revealed (a "no” answer). Our algorithm is less
accurate but easier to analyze than the naive approach.

Algorithm - detailed description

1. Creation phase

(a) Reveal the levels L; of U, (v, G).
i. If for some 1 <7 < r it holds that |L;| > (14 €)d|L;—1| with e = 1/9, return

7 nO?? .

ii. Initialize a subgraph F' with all vertices of U, (v, G) and no edges.
2. Connection phase: For every level L; from i = r to ¢ = 1 do:

(a) Inner step: reveal all inner edges of L;, i.e. edges in G of the form {u,u'} where
u#u € L;. Add them to F.

i. At this point all edges of L>;(v, F') are revealed. If there exists an i-cycle
in F', return "no”.

(b) Counting step: for every u € L;, determine how many neighbours it has in L; ;.

i. At this point we know the degree (in F') of all vertices in L;. If there exists
u € L>;(v, F) with degree < 2 in F - delete u. Repeat until all vertices of
Ls;(v, F) are of degree > 2 in F.

ii. The number of i-sub-horseshoes in F' is also known now. If this number
is bigger than b; (to be determined later), return "no”. Moreover, the
structures of the i-(sub-)horseshoes are known aside from the identities of
their endpoints in L;_;.

(c) Linkage step: For every u € L;, reveal the neighbours of u in L;_;, adding one
of the new edges to T and the others to R. Add all new edges to F.

i. At this point, all the -horseshoes and i-sub-horseshoes are revealed.

Finally, if the connection phase ends without returning "no”, the algorithm return ”yes”.

Lemma 5.5 (validity of the algorithm). If algorithm returns “yes”, then U,(v,G) is
2-degenerate.

Proof. Assume that the algorithm returned ”yes”. In the end of the iteration i = 1,
L>(v, F) does not contain cycles - since a "no” has not been returned before then. There-
fore, L1 (v, F') = F\{v} is a forest and thus 1-degenerate, implying that F' is 2-degenerate
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at that point. Note that the algorithm does not need to inspect the edges between v and
L, since the 1-degeneracy of F'\ {v} suffices.

Observe that if a vertex v has degree < 2 in a graph H, then H is 2-degenerate if and
only if H \ {v} is 2-degenerate.

Let vy, ..., v, be the ordered sequence of vertices that were deleted from F' during the
algorithm. Let F; = U,(v,G) \ {v1,...,v;} for i = 0,...,m. Clearly, v;; is of degree at
most 2 in F; (since we only delete a vertex if it is of degree at most 2 in F' at that point).
The previous observation implies that F; is 2-degenerate if and only if F;,; is 2-degenerate.
Moreover, the first argument states that F,, is 2-degenerate. Therefore, by induction Fj is
2-degenerate for every i. Noting that Fy = U, (v, @) finishes the proof. ]

5.2 Analysis of the algorithm

We first present notation that is used throughout the analysis. Afterwards we characterize
the set of vertices in L>; that survive iteration ¢ = j. We use this characterization to
give bounds (valid with high probability) on the number of j-sub-horseshoes revealed in
a given iteration as well as the probability to reveal a j-cycle. This gives us the desired
lower bound on the probability that the algorithm returns ”yes”, which implies (along with
Lemma that an r-ball in G,, , is 2-degenerate with sufficiently high probability.

Notation
The following quantities are of interest for analysing algorithm
n; number of vertices in L;(v, G).

¢; number of j-cycles in F' at the end of the inner step in iteration ¢ = j of the
connection phase of algorithm [5.1}

h; number of j-sub-horseshoes in F at the end of the counting step (2b]) in iteration ¢ = j
of the connection phase.

The next group of notations refers to the probability to get a "no” answer at some point
of the algorithm assuming a "no” has not been returned before then.

¢' probability that step (L(a)i) reveals that n; 11 > (1 + €)dn; for some j.

qj probability that ¢; > 0 assuming the algorithm has not returned "no” before iteration
1 = j of the connection phase.

qé-” probability that h; > b; (b; will be determined later) assuming the algorithm has not
returned "no” before iteration ¢ = j of the connection phase.

Note that h; = 0 and these three conditions are the only ones that lead to a "no” answer,
implying the following lemma.
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Lemma 5.6. The probability that algorithm [5.1] returns "no” is no more than

d+d a5+ q (5.3)
=1 =2
The proof of Theorem [5.2] follows from the next Theorem, along with Lemmas and

0.0l

Theorem 5.7. The following holds with respect to algorithm[5.1 on G, and v defined as
above:

ql =o(1) (5.4)
< o (5.5)
Z_jq; 24 =ol) (5.6)

Proof. (5.4) is immediate from Lemma [3.3]
Asin (4.2) and (4.3)) and since L, is of size at most (1 + €)"d", the expected number of

cycles in L, is no more than
o

1, 1
2% <1 (57)

which proves (5.5)). In the rest of the proof we establish (|5.6)).

Horseshoes and sub-horseshoes

We start by explaining why horseshoes and sub-horseshoes are important for the analysis
of this problem.

Lemma 5.8. A vertex in L>; might remain in F' after step of iteration 1 = j of the
algorithm only if it lies in some j-horseshoe of F' at that point.

Proof. Observe F' at the end of step in iteration ¢ = j of the algorithm. Let w €
L= (v, F') be a vertex that is not contained in any j-horseshoe at this point. Then there
is at most one edge e touching w that is the first edge of a path P from w to L;_; whose
interior is in L>; and last edge is in R (note that this interior might also be empty if P is
a single edge). Otherwise, let e; # ey be such edges and let Py, P, be the corresponding
paths. Since Ls;(v, F) does not contain cycles at this point, the interiors of P, and P, are
disjoint. Thus w lies in the horseshoe P, U P, a contradiction. Hence there exists at most
one edge e of this type. We can assume that there exists exactly one.

Let S, be the connected component of w in Ls;(v, F') \ {e} at this point. Any vertex
aside from w has at most one neighbour in F outside S, (that is its parent in 7). Moreover,
Sy is a forest and thus contains a leaf z # w. z has degree < 2 in F' and can be removed
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from it.

This process ends when all vertices of S, \ {w} are removed from F, leaving w with at
most two neighbours: its parent in 7" and the other enndpoint of e. At this point, w can
be removed from F', completing the proof. O

One can check that the following is a consequence of the last lemma providing a similar
result for edges.

Corollary 5.9. An edge of U, (v, G) that has an endpoint in L>; might remain in F after
step of iteration i = j of the algorithm only if it lies in some j-sub-horseshoe of ' at
that point.

Recall that the bounds b; in step have not been defined yet. Take b; = 0 since
there are no 1-horseshoes. For 1 < j < r take b; = njz‘ L. The reasoning for these choices
will be clearer later.

r-horseshoes and ¢"

A r-horseshoe of length k£ + 1 is a path in R with both endpoints in L, ; and k& > 0
interior points in L,. The number of candidates to be r-horseshoes of length k + 1 is
< n? nF. FKG inequality implies that each candidate is indeed a r-horseshoe in U, (v, G)
with probability at most p**1. Such a horseshoe, if exists, forms no more than 3k? r-sub-
horseshoes. Combining everything we get

El[h,|algorithm did not return "no” before sampling h,| < (5.8)
Z 3k2pk+1n3_1nf = 3n,_1(pnr—1) Z /{:2(pnr)k < (5.9)

k=1 k=1
Sny o i K237k < O(1) (5.10)

T - d '
k=1
the inequality in (5.9) is true since
3 /10 \ " - A

pn; < 1 (§d> (10/9Yd < 37"d/~" (5.11)

Applying Markov’s inequality to (5.8) we get:

%Trdl _0 (2) — 0(1/log £) = o(1) (5.12)

h
q <

j-cycles and j-horseshoes for j < r

Assume that the algorithm has not returned "no” in step or in iterations r,r —
1,...,7 + 1 of the connection phase. In particular, the number of (j 4 1)-sub-horseshoes
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in F'is at most b;;; and there are no (j + 1)-cycles in F'. At this point in the algorithm,
the inner structures of the (j + 1)-horseshoes are known, but their endpoints are not yet
determined (as the last possible "no” answer of iteration j + 1 of the connection phase
comes after the inner structures are determined but before step [2c| is taken).

A j-cycle has parameters m, k (with 1 <m <n; , 0 <k < m) if it consists of exactly
m vertices in L;, k internally-disjoint (j+ 1)-sub-horseshoes (the interiors are disjoint since
a j-cycle is simple) and m — k inner edges of L;. It is clear that any j-cycle in F' can be
presented in such a form.

A j-horseshoe with parameters m,k (1 <m <mn;, 0 <k <m—1) is defined similarly:
it consists of m vertices in L;, k internally-disjoint (j + 1)-sub-horseshoes, m —1 — k inner
edges of L; and two edges down to L,;_; that are in R. Again, any j-horseshoe can be
presented in this form.

We now bound the expected number of j-cycles and j-horseshoes. We do so by esti-
mating the number of such objects with parameters m, k for all possible values of m, k.

Fix ay,...,a, b1, ..., bp € V (not necessarily distinct) and internally-disjoint (j + 1)-
sub-horseshoes Hiy,..., H,. The probability that a specific H; has endpoints a;, b; is at
most ﬁ < ni? (this is true for n; > 2 ; if n; = 1 then there are no (j + 1)-sub-horseshoes
anywayz). These k events are independent (as per step [2c| in the connection phase), and

k
o S

There are no more than b;‘-’ 1 possible ordered choices of (Hy, ..., Hy). Therefore, the ex-

pected number of ordered sets of k internally-disjoint (j+ 1)-sub-horseshoes with endpoints

(a1,b1), ..., (ag, bx) is no more than

the probability that all of them occur together is at most

AE, 4k

2%k = k&
n; Enj

(5.13)

j-cycles

First we bound the expected number of j-cycles with parameters m,k in F after step
in iteration ¢ = j of the connection phase. Fix m vertices (v, vs,...,v,) € L; and order
them cyclically (there are at most nj* such orderings). Now fix & couples of neighbouring
vertices a;, b; in the chosen cyclic order (there are (T,’;) < 2™ possible choices of k-tuples).
The expected number of k-tuples of internally-disjoint (j+1)-sub-horseshoes with endpoints
a;, b; is no more than %. The probability for any other couple of neighbours in the cyclic

ordering to have an edge between them is p independently of everything else. Since the
expected multiple of independent random variables is the multiple of their expectations,
we get that the expected number of j-cycles with parameters m, k is no more than

maom m—k _ \m— = < | = — < |- .
n;'2 fknfp (2pn;) (6) > <d> <£> < (f) (5.14)
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And the total expected number of j-cycles is no more than

n;g m m—k k ;5 m
m;}; (é) (%) _ m; (%) (14 0(1)) = %(1 +o(1)) = o(1) (5.15)
In particular we get
q; = O(1/4) = o(1) (5.16)

j-horseshoes

We bound the expected number of j-(sub-)horseshoes with parameters m, k in F' after
step in iteration ¢ = j of the connection phase. Fix m linearly ordered vertices
(v1,v2,...,Um) € Lj; (there are at most n7* such orderings). Now fix & couples of neighbour-

ing vertices a;,b; in the chosen linear ordering (there are (™_') < 2™~! possible choices).

The expected number of k-tuples of internally-disjoint (7 + 1)-sub-horseshoes with end-
k
Z’fn’?
linear ordering to have an edge between them is p independently of everything else. For
a vertex in Lj;, the expected number of neighbours via R it has in L;_; is no more than
n;—1p. Combining all of the above, the expected number of j-horseshoes with parameters

m, k is no more than

points a;, b; is no more than . The probability for any other couple of neighbours in the

AR
b - a1
J
(2n,9)" " (np) (n;-1p) (8/0)m; 1 < (5.18)
d(jfr)(mflfk)djfrdjflfr(g/g)knjfl < (5.19)
d- MR A=3(8/0) ;= ©(log £)*d™n; (5.20)

Each j-horseshoe with such parameters contributes no more than 3m? j-sub-horseshoes,
and the total expected number of j-sub-horseshoes in F' is at most

n; m-—1
3 ) O(log)fd " n;_ym® < (5.21)
m=1 k=0
Z o(1)O(log )" 2d~™2m*n;_; < O(0)*n;_, (5.22)
m=1
By Markov’s inequality,
0)73n,_
g < 0 <o) = o) (5.23)
J

The proof of (5.6)) is now complete by (5.16), (5.23) and since r is fixed. O
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Remark 5.10. Special care should be taken in proofs of this type to ensure that no source
of randomness is used more than once (that is, to prevent the case when some information
is revealed at some point of the algorithm but is assumed to be random later on). In
particular, note that the information needed to determine how many j-sub-horseshoes
there are does not interfere with the information needed to know, given all the interiors of
j-sub-horseshoes without knowing their endpoints yet, what is the probability that specific
k internally-disjoint j-sub-horseshoes have specific k£ couples of endpoints.
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Chapter 6

fe(,r) For Non-Constant c

In the previous chapters, f.(¢,r) with small fixed ¢ values was considered. In this chapter
our results are extended to large values of ¢. Take G on n vertices, 0.98(10¢1log ()" < n <
(10¢1og £)"™! with £x,(G) = 3 and with no independent set of size (1 + 0(1))21"%1, where,
as before, d = 3/log /¢ and p = 13—0(106 log ¢)~". Such G exists by the results in Chapter

Construct the following graph Gj: every vertex in the original G is expanded to a
k-clique. Two vertices in G are connected if they lie in the same clique or if the cliques
in which they lie were neighbours in G. Every independent set in G contains at most
one vertex from each clique, and thus the maximal independent set in Gy is of size <
(1+ 0(1))21075;(@. There are kn vertices in Gy, and thus its chromatic number is (for ¢ large
enough)

kn

X (Gr) > T 0(1))2107%@ > kil (6.1)

Every r-ball in G, is contained in an expanded r-ball from G. Thus

Ixr(Gy) < 3k (6.2)
We conclude that for ¢ = kf*, ¢* large enough
far(kC*, 1) < kn < k(100 log €)1 (6.3)
Taking ¢ = 3k, ¢ = k{* the last result implies that
c i N\ (30010g £) !
(¢, - 10—=1 — —_ 6.4
ren <5 (10 e (L)) < (6.4

When ¢ and ¢ are not of this form, we need to replace them by 3|¢/3| < cand |¢/3] (ﬁ-‘ >
¢ respectively. The following Theorem summarizes the discussion.

Theorem 6.1. There exists ¢y such that for every positive ¢ divisible by 3 and ¢ >
max(c, o) divisible by c/3:
30¢log £)"+1
_ (30¢log )
CT’

fe(l,r) (6.5)

23
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Thus for every ¢ > 3:
[O(¢log )"
< o

fe(l,7) (6.6)

Remark 6.2. The contribution of ¢ in this upper bound is ¢~", whereas this contribution

in the corresponding lower bound by Bogdanov in (1.4]) is ¢™" 1.



Chapter 7
fc(f, 1)

As stated in Chapter [1.2]it is known that f>(¢,1) = © ((?log¢). In this chapter it is shown
that f.(¢,1) = ©(?log¥) for any fixed ¢ > 2. Since f.(¢,1) < fo(£,1), we only need to
show that f.(¢,1) = Q(¢?log ) for fixed ¢ > 2.

Theorem 7.1. There exists o > 0 such that for every £ > ¢ > 2

log

cloge

fe(l,1) > a (7.1)

In particular, for any fixed ¢ > 2:
f.(€,1) = 6(Flog¥) (7.2)

Proof. Let G = (V,E) be a graph on n = f.(¢,1) + 1 vertices with £x;(G) < ¢ but

X(G) > ¢. Our goal is to sho that n > o/ilﬂ for a suitable choice of «. By taking
cloge

a critical subgraph of G we can assume that the minimum degree of G is at least ¢ and

clearly we can also assume that n < (£?log ¢ for some absolute constant ¢ > 0. By these
assumptions, the average degree d in G satisfies £ < d < n < (*log¥.

Large independent set in GG

Observe that

e There exists v € V' with deg(v) > d. The neighborhood of v is ¢-colorable, and thus
contains an independent set of size at least d/c > ¢/c.

e Alon [2] showed that there exists 8 > 0 such that any graph G on n vertices with
average degree d > 1 and ¢x;(G) < ¢ contains an independent set of size

'In fact we need to show this for n — 1 instead of n but it is clearly equivalent.

25
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Lemma 7.2. There exists an independent set of size > & Z}‘;% i G where 6 > 0 is a

suitable global constant.

Proof. There exists an independent set of size

. d n ﬁnlogf nlogn (7.3)
B logcd clo d cloge clogc

as needed.

Removing an independent set of size o @/% ) Zig? from G results in a
non-(¢ — 1)-colorable graph. Hence

fe(€,1)log f.(¢,1)
—1.1) < 1) — 4
Fl€=1,1) < £l 5\/ P (7.4
For § small enough and ¢ > 2, the function
o zlogx
h(z) =2 —9¢ logc (7.5)

is increasing in the domain [2, 00). Now take a = min(1,%/9) and fix ¢ > 2. We will show
that f.(¢,1) > o/jlfggf for every ¢ > ¢ by induction on ¢. The base case ¢ = ¢ satisfies

?log( ?logl
>«
cloge = clogc

fele,1) =c= (7.6)

: 210 .
Assuming that f.(¢,1) > O‘chi)ggf and using (7.4) we get

h(fe(l+1,1)) (7.7)

zzlogg_fC(HLl)_é\/fc(ﬁH Dlog fu(¢ +1,1) _

clogc cloge

Note that f.(¢+1,1) > ¢+ 1. If « (L) log(t+]) < p 4 | then we are finished. Otherwise,

clogce
takex:a%ﬁem>€—l—l>3 Then
€2 log ¢ _ log(¢ +1) 2
— (+1)? = *)———= 1 (log(¢ + 1) — log ¢
clogc {« +1) ) cloge + (log(¢+1) — log )clogc}
a(2€+1)log(€+1)+€ < 34 (0+1)log(¢ +1)

cloge cloge

(CHDlog(C+1) 105 p 1 |
:3a\/ clog c g( ) S?)\/a\/xlogx S5\/9&10gm

clogc cloge cloge




The last inequality and (7.7) imply that

2]
() < a8 < n(fe+1,1))
clogce
By the monotonicity of h,
1)1 1
MO Y) o p iy

clogc

finishing the induction step and completing the proof.
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Chapter 8

Final Remarks

8.1 Non-constant r

Our bounds for f.(¢,r) are valid for fixed values of 7. These bounds still hold if we require
that » < ~¢ for a suitable global constant v > 0 instead of requiring r to be fixed. The
following amendments of the proof need to be made:

e In Lemma 3.3 we need to make sure that ¢@+e()r—G+o)los(l/70¢ 2% o o
€ = 1/9 and 7. = e(1 +¢)"0+9) < 1. For £ large enough, this expression indeed
tends to 0 for every r < log(1/v.)¢. Take a suitable v < log(1/7.) that is good for

every { > 2.

e In Chapter [5] take

T J=T
bj=q"~ 1<j<r (8.1)
0 =1

It can be shown that now ¢5, ¢/ < O(1/d) for any j < r. This proves (5.6)) in Theorem
and completes the proof of Theorem [5.1}

Note also that in Theorem a slightly different analysis is needed for large r, but the
stated result remains valid.

8.2 More on f.({,r)

Our general upper bound for f.(¢,r) is

[O(1og )]

fell,r) < - (8.2)
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We have already seen that this bound is tight up to a polylogarithmic factor for fixed ¢ > 3
and r. For other range of the parameters and in particular when r is very large there is a
result of Kierstead, Szemerédi and Trotter [9] providing a lower bound for f.(¢,r), which is
close to being tight in this range. See also [4]. In some cases, however, the gap between the
known upper and lower bounds is large. In particular, it will be interesting to understand
better the behaviour of f.(r,r), and of fo(¢,7).

The question of obtaining a better estimation of f.(¢,r) in the general case (as well as
for fixed ¢ > 3 and fixed r) is left as an open problem.
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