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Abstract

Graph spanners are a classical and well-studied concept in
graph theory with a plethora of algorithmic applications.
A spanner is a sparse spanning subgraph which preserves
distances in the original graph up to some additive or
multiplicative stretch. The sparsity and approximation
guarantees raise a natural question: can spanners serve
as (the backbone of) space-efficient data structures for
approximate distance computation in real-world networks?
Toward this goal, we make the first systematic study of
the size and accuracy (additive error) of existing spanner
construction on real-world networks. Our work exhibits
a number of surprising findings, which shed light on the
structure of these networks, and may inspire downstream
algorithm design. As it turns out, state of the art techniques
based on low diameter decompositions tend to produce very
sparse, almost tree-like, spanners in several large real-world
networks. However, the real-world additive error of these
spanners is suboptimal, and we show that slightly denser
constructions offer a more accurate alternative.

1 Introduction

Graph spanners—sparse subgraphs that approximately
preserve distances—are widely studied due to their ap-
plications in routing, data compression, and distributed
computing, among others. They allow for efficient, on-
demand distance estimation without storing or repeat-
edly processing the entire graph, making them valuable
for large-scale graph analysis tasks.

Despite their theoretical appeal, the empirical ac-
curacy of spanners for approximate distance estima-
tion remains largely unexplored. To address this gap,
we conduct a systematic study, evaluating spanners on
medium-sized social and information networks. We also
introduce a new spanner leveraging the core-periphery
structure of social networks and demonstrate its com-
petitive performance against existing methods, which
often overlook these structural insights.

Problem definition. Real-world social and infor-
mation networks have extremely small distances, with
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the 90th percentile diameter often around 4 or 5. This
makes additive error the most meaningful accuracy mea-
sure. A subgraph G’ of G is an additive k-spanner if

de (u,v) < dg(u,v) + k.

for all vertex pairs u,v. Ideally, we seek very small
k, such as 1 or 2. That said, given the complex,
beyond-worst-case nature of real-world networks, as-
sessing spanner quality via the average error may be
more informative than enforcing a universal bound k.
Existing spanner constructions. Numerous
spanner constructions have been studied in the theoret-
ical literature, but these are less relevant for sparse real-
world networks with small diameters and near-linear
size constraints. Indeed, for worst-case graphs, Abboud
and Bodwin [I] show that restricting the spanner to
O(n*/37¢) edges requires polynomial additive stretch.
Thus, we focus on practical techniques: two meth-
ods by Miller et al. [4] and Forster et al. [3] based
on low-diameter decompositions (LDDs), and a heuris-
tic by Pathak et al. [5] that improves sparsity using
high-coverage independent sets. We refer to the origi-
nal methods as MPVXbase and FGVbase, and their en-
hanced versions as MPVXcompact and FGVcompact.
A Core-Periphery spanner. Basu et al. [2] re-
cently showed that the core-periphery structure of real-
world networks enables efficient shortest path approxi-
mation with sublinear time and space. Their approach
partitions the graph into a small inner core Lg , an outer
core L, consisting of Ly’s neighbors, and a periphery
L5 of all remaining vertices, and all paths are forcibly
routed through Ly. Building on this, we introduce the
CP-spanner, which for every vertex in Ly retains only
the edge to the highest-degree neighbor in L;. This
simple modification effectively sparsifies the graph.

Dataset | |V| | |E| Dataset Vi | |E|
Euemail| 1K 16.1K || Livejournal | 4.0M| 34.7M
Skitter | 1.7M| 11.1M|| Hollywood | 1.1M| 56.3M

Table 1: Datasets used in experiments

2 Experimental Results

We conduct several experiments on four representative
datasets, see Table A striking observation is that
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Figure 1: (a) Percentage of vertices in 1-cores of spanners. (b) The x-axis is the size of the spanner as fraction of
the original graph, and the y-axis is the average additive error as a percentage of the true distance. (c) Percentage

error by spanner type for different datasets.

many spanners are extremely sparse, often with only
a few more edges than vertices, suggesting a tree-
like structure. To investigate this, we compute the
1-core of these graphs. While not a perfect metric
for tree-likeness (as the NP-complete Feedback Vertex
Set problem provides a definitive answer), a tree’s 1-
core is empty, making it a useful indicator. Indeed, as
shown in Figure a), the sparsest spanners retain very
few vertices in their 1-cores, with the MPVX spanners
yielding an empty graph for the Euemail dataset.

Next, we examine the relation between the sparsity
and the accuracy of the resultant spanenrs. Figure (b)
shows that extremely sparse MPVX spanners tend to
have high additive error, though their average error
remains well below the worst-case multiplicative stretch
(17 for MPVX, 7 for FGV). We also profile CP-spanners,
which perform similarly to FGVbase in both accuracy
and density. Figure (c) further breaks down errors by
dataset. We note that better hyperparameter choices
could enhance CP-spanner performance.

In our final set of experiments, we examine how
the edges retained in LDD-based spanners align with

the core-periphery structure (Figure . We find no
consistent correlation across datasets—the fraction of
preserved edges from each part varies significantly.
This suggests that LDD methods select spanner edges
independently of the core-periphery structure.

3 Future Directions

We highlight an interesting and likely inherent tradeoff
between accuracy (additive error) and density (% of
edges, compared to original graph) in spanners with low
additive error for real-world networks. In our ongoing
effort we perform a systematic study of the structure
and guarantees of such spanners, considering a wider
range of spanner constructions and conducting a large
variety of experiments in the spirit of those proposed in
this paper. We hope the study of empirically-efficient
spanners will lead to their deployment in real-world data
structures for distance computation and routing.
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Figure 2: Percentage of edges from L., (one end point is

in L, and the other in L,) preserved in LDD spanners.
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